Linux Fundamentals

Paul Cobbaut

September 18, 2024

Contents

Abstract

I. Introduction to Linux

1. Linux history
1. 1969
12. 1980s.
13. 1990s.
14. 2015

2. distributions
21 LinuxandGNU
2.2. Package management

2.3. The Red Hat family of distributions
2.4. The Debian family of distributions
2.5. Notable “independent” distributions

2.6. Whichtochoose?

3. licensing
3.]. about software licenses

3.2. publicdomain softwareandfreeware
3.3. Free Software or Open Source Software

3.4. GNU General Public License .
3.5. using GPLv3 software
36. BSDlicense
377. otherlicenses

3.8. combination of software licenses

Il. Installing Linux

4. installing Debian 8
41. Debian
42. Downloading
4.3, virtualbox networking
4.4, setting the hostname
45. adding a static ip address . .
4.6. Debian package management

5. installing CentOS 8
51. download a CentOS 7 image
52. Virtualbox
53. CentOS 7 installing
54. CentOS 7 firstlogon
54]. setting the hostname .
5.5. Virtualbox network interface .
5.6. configuring the network . . .
5.7. adding one static ip address .
5.8. package management
5.9. logon from Linux and MacOSX

19

21
21
21
36
38
38
39

4
41
42
45
53
53
54
55
55
56
56

Contents

510. logonfrom MSWindows e

6. getting Linux at home

download a LinuxCDimage e
download Virtualbox e
createavirtualmachine
attachtheCDimage e
install Linux e

6.1.

6.2.
6.3.
6.4.
6.5.

llIl. First steps on the command line

7. man pages

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
7.10.

man
man
man
man

Scommand
$configfile
$Sdaemon
-K (@propos)

Whatis . . .
WNEreis e

man
man
man
man

SEeCtioNS e
$section $file
MAN . o
db

8. working with directories

8.1.
8.2.

8.3.
8.4.
8.5.

8.6.

8.7.

8.8.
8.9.

absolute andrelativepaths

path
Is .
85.1.

completion e

8.5.2. Is-l s
853, Is-Ih . . .

mkd
8.6.1.

5

rNAir .

8.71.

rMdir-p . .

practice: working with directories
solution: working with directories

9. working with files

9.1

9.2.
9.3.
9.4.

9.5.

9.6.

all fil

esarecasesensitive

everythingisafile

file

Ctouch -t L.

copyonefile e

. copytoanotherdirectory
C OGP M

. copy multiple filestodirectory,

59
59
60
60
65
68

Contents

9.6.5. CP -l . . e 86

O7. MV . . o e e 87
9.71. renamefileswithmv 87
972. renamedirectorieswithmv 87
973, MV i o o o o e 87

O.8. rename e 88
9.81. aboutrename 88
9.8.2. rename on Debian/Ubuntu 88
9.8.3. renameon CentOS/RHEL/Fedora 88

99. practice: workingwithfiles 89
9.10. solution: working with files 89
. working with file contents 91
100, head 91
10.2.tail . . . e 92
T10.3.cat . . . e e e e 92
10.31. concatenate e e e 92
10.32. createfileso 93
10.3.3. customend marker 93
103.4. copyfiles 93
T10.4.1aC e e 94
105. moreandless e 94
10.6.StriNGS o o e 94
10.7. practice: filecontents 94
10.8.solution: filecontents 95
. the Linux file tree 97
1N.1. filesystem hierarchystandard 97
M2 manhier e 97
N.3. therootdirectory/ 97
1.4, binary directories e e 97
4L /oin . . 98
1.4.2. other/bindirectories 98
M43 sbin . . 98
Nas o .. 98
4S5 Jopt. . . o 99
1.5. configuration directories e 99
T51 /boOt . . o oo 99
NE2. [etC . . 100

1.6. datadirectories 101
N61 /home 101
.62, root . . . 102
TI.8.3. /SIV o o o 102
N6.4 /media 102
65 /MmNt ..o 102
6.6, /tMP . . . o 102
1N.7. in memorydirectories 102
N71 Mdev . . 102
1.7.2. /proc conversation withthekernel 103
N73. sysLinux26 hot plugging o o v o 106

1.8. Jusr Unix Systerm RESOUICES v v i ittt 106
N.81. Jusr/bin 107
N.82. Jusrfinclude 107
N.83. Jusr/lib 107
N.8.4. Jusrflocal 107
N.85. Jusr/share 108
T.8.6. JUSK/SIC . . . o o o 108
1.9. varvariabledata 108
.90 ANar/log . . . o 108

Contents

11.9.2. Nar/log/messages 109
1.9.3. Narfcache 109
1.9.4. Narfspool 109
95 ANarflib . . o 109
.96, Narf. . . . o 109
1.10.practice: file systemitree e 10
1.1 solution: file systemtree e m
IV. Shell expansion 13
12. commands and arguments 15
121, arguments e e e n5
12.2. white spaceremoval e N5
123. singlequotes e 16
12.4.doublequotes e 16
125. echoand quotes e 16
12.6. commands e n7
12.6.1. external or builtincommands? 17
12.6.2. TYPE . . . e n7
12.6.3. running externalcommands L o n7
12.6.4. which 17

12.7. ali@ases e e e 18
12.7.]. createanalias e 18
12.7.2. abbreviatecommands 18
12.7.3. defaultoptions 18
12.7.4. viewing aliases 18
1275, unalias e 19
12.8. displaying shell expansion 19
12.9. practice: commands and arguments o 19
12.10solution: commands and arguments 120
13. control operators 123
1310, ;semicolon e 123
13.2. &ersand e e 123
133. $? dollar question mark 124
13.4. && double ampersand 124
13.5. || double vertical bar 124
13.6. combining &&and || e 125
13.7. #pound sign e e 125
13.8.\ escaping special characters 125
13.8.1. endoflinebackslash 125

13.9. practice: controloperators 126
13.10solution: controloperators e e 126
14.shell variables 129
141, $dollarsign 129
14.2.case sensitiVe L e e 129
14.3.creating variables 129
T4.4.QUOTES L e e e e e e e 130
145,56t e 130
T4.6.UNSEL L L 130
14.7. $PST . L 130
14.8.5PATH . . . o 131
T4.9.€nNV . . L L e 132
T470eXPOrt .« . . . e e 132
1411.delineate variables 133
1412unbound variables 133
1413 practice: shellvariables 133

Vi

15.

16.

17.

18.

14.14solution: shell variables

shell embedding and options

15.1. shellembedding.
1511, backticks
15.1.2. backticks or single quotes

15.2. shelloptions

15.3. practice: shell embedding

15.4. solution: shell embedding

shell history

16.1. repeating the last command . .
16.2. repeating other commands . . .
163. history
16.4.In
165 Ctrl-r
166.$HISTSIZE
16.7. $HISTFILE
16.8. $HISTFILESIZE
16.9. prevent recording a command .
16.10(optional)regular expressions . .
16.11. (optional) Korn shell history . . .
16.12.practice: shell history
16.13.solution: shell history

file globbing

171, *asterisk
17.2. ? questionmark
17.3. [square brackets
174.a-zand 0-9ranges
17.5. $LANG and square brackets . . .
17.6. preventing file globbing
17.7. practice: shell globbing
17.8. solution: shell globbing

Pipes and commands

1/O redirection
18.1. stdin, stdout, and stderr
18.2. output redirection
1821 >stdout
18.2.2. outputfileiserased
18.2.3. noclobber
18.2.4. overruling noclobber . . .
1825 »append
18.3. error redirection
1831 2>stderr
1832.2>&1
18.4. output redirection and pipes . .
18.5. joining stdout and stderr
18.6. input redirection
1861 <stdin
18.6.2. « here document.
18.6.3. «<< herestring
18.7. confusing redirection
18.8.quick fileclear
18.9. practice: input/output redirection
18.10solution: input/output redirection

Contents

137
137
137
138
138
138
139

141
141
141
141
142
142
142
142
143
143
143
143
144
144

147
147
147
148
148
149
149
149
150

153

155
155
155
155
156
156
157
157
157
157
157
158
158
159
159
159
159
160
160
160
161

Vii

Contents

19.

20.

21.

viii

filters
190, cat . . e e
19.2.t€e . . L L e
19.3.9rep e
T9.4.CUL e e
10,5 . e e e
T10.6. WC . . . o e e e
19.7. SOt . . o e e
19.8.UNIQ e
19.9. COMM L e
19.00.0d . . L e
190.sed . . . L e e e
1902 pipeexamples
19721. wWho [WeC
19722.who |cut|sort e
19023.grep | cut e
19.03.practice: filters e
1914solution: filters L

basic Unix tools

200.FiNd . L e
20.2.1ocate e
20.3.date . .. e
20.4.cal ..o e
20.5.8leep . . . L e
20.6.50iME . . L
20.7.9ZIp - QUNZIPD e
20.8.zcat - zmore . .. L e e
209.bzip2-bunzip2
2010bzcat-bzmore e
2011 practice: basic Unixtools
20.12solution: basic Unixtools

regular expressions

211 regex VerSioNS e e

21.2.9rep . . . e e
21.21. printlines matchingapattern,
21.2.2. concatenatingcharacters L oo
2123. oneortheother
2124.0N€0rMOIe o it e e
21.25. matchtheendofastring
21.2.6. match thestartofastring
21.2.7. separatingwords e
21.2.8. grepfeatures
21.2.9. preventing shell expansionofaregex

21.3.rename . .o e e
2131, therenamecommand
2132, perl . .
2133, wellknownsyntax
2134, aglobalreplace
21.35. caseinsensitivereplace L e
21.3.6. renaming extensions L e e e

214.5ed . L L
21410, streameditor L e e
21.4.2. interactive editor L
21.4.3. simple back referencing
214.4. backreferencing
2145 adotforanycharacter
21.4.6. multiple back referencing

Contents

2147 . whitespace e 191
21.4.8. optionaloccurrence e 191
2149, exactlyntimes 191
21.410between nand mtimes 192
215. bash history e 192
VL. Vi 195
22.Introduction to vi 197
221. command mode andinsertmode o 197
222.starttyping (@AIT1oO) e 197
223.replace and deleteacharacter (rxX) 198
22.4.undo,redoandrepeat (U.) L 198
225 cut,copyandpastealine (ddyypP) L 198
22.6.cut, copy and paste lines (3dd 2yy) 198
22.7.startandend ofaline (Qorrand$) 199
22.8.jointwolines (J)and more e 199
229.words (W) e e 199
2210save (ornot)andexit (w:g:q!) e 200
2271.Searching (/?) 200
222replace all (1,$ s/foo/bar/g) 200
2213readingfiles (rirlemd) . . o . L L 201
2214text buffers L e 201
2215multiplefiles 201
2216abbreviations L e 201
2217key MappingsS e 202
2218setting options L 202
2219practice: vilm) . . . e e 202
22.2Golution: vi(m) . . . e 203
VIL.Scripting 205
23.introduction to scripting 207
2371 introduction L 207
232.helloworldo 208
233.she-bang 208
23.4.COMMENTS o e e e e 209
235.extension e 209
23.6.shell variables 210
237.variable assignment 210
23.8.unboundvariables 21
239.sourcingascript 2N
2310qUOLINg L e 212
2311troubleshootingascript 213
2312Bash's “strict mode” 213
2313prevent setuid root spoofing 214
23)4practice: introductiontoscripting L Lo 214
23.15solution: introductiontoscripting 215
24.scripting loops 217
240.test[] e 217
242.ifthenelse 218
243.0fthenelif 218
2445011000 e 219
245 whileloop 219
246.untilloop e 220
24.7.practice: scripting testsand loops L o 220

Contents

24.8.solution: scripting testsand loops o

25.scripting parameters
251 script parameters
25.2.shift through parameters
253. runtime input L L
25.4.sourcing aconfigfile
25.5.get script optionswithgetopts
25.6.get shell optionswithshopt,
25.7. practice: parametersandoptions. Lo
25.8.solution: parametersandoptions L e

26.more scripting
26.0.eval Lo e
26.2.(() - o o e
26306t . e
20.4.CAS€
26.5.shell functions L
26.6.practice: morescripting
26.7.solution: morescripting

VlliLocal user management

27.introduction to users
270 Whoami e
27.2.WNO . . e
27.3.Whoami e
274 W . . L e
27.5.0d . e
27.6.sUtoanotheruser
277.SUTOTro0t e e
27.8.5UaSTO0L
279.sUu-$Username
2700SU - . . e
271l.run a programasanotheruser e
2702vISUdO . L L
2703SUdO SU - . . . e
2714sudo logging
27.15practice: introductiontousers.
27.16solution: introductiontousers.

28.user management
28.1.user management L Lo e e e
28.2./etc/passwd
283.r00T . . . L
28.4.useradd ..o
28.5./etc/default/useradd
28.6.userdel oL
28.7.usermod ... e
28.8.creating home directories
289 Jetc/skel/
28.10deleting home directories
281loginshell
2812chsh . . o o
28.13practice: user management e
28.l4solution: user management e

223
223
224
224
225
225
227
227
227

229
229
229
230
23]

23]

232
233

235

237
237
237
237
238
238
238
238
238
239
239
239
239
240
240
240
241

Contents

29.user passwords 249
201 pasSWA . . oL e e e 249
29.2.shadow file e 249
29.3.encryptionwith passwd 250
29.4.encryptionwithopenssl 250
295.encryptionwithcrypt 251
29.6./etc/logindefs 252
29.7.chage e 252
29.8.disabling apassword 253
299.editing localfiles 253
29.10practice: user passwords 254
29.01solution: user passwords 254

30.User profiles 257
301 system profile 257
302.~/bash_profile 257
303.~/bash_login 258
304~[profile 258
305.~/bashrc. 258
30.6.~/bash_logout 259
30.7.Debianoverview e e e 259
30.8.RHELS overview e 260
309.practice: user profiles 260
30.10solution: user profiles 260

31. groups 263
31 groupadd ... e 263
31.2. groupfile e 263
313, groUPS . & v v v e e e e e e e 264
3l4.usermod ..o e e e 264
315 groupmod ... L L e 264
3lo. groupdel ..o e 264
317, gpasswd ..o e e 265
3LB. NEWOID . . . e e e e e e e 265
BLO.VIGr . L e 266
3110.practice: groUps v v e e e e e 266
310 solution: groups e 266

IX. File security 269

32.standard file permissions 27
321 fileownership e 271

3211 userownerand groUP OWNEr e 271
3212, Chgrp . . . e 271
3213 chown . . . e 272
322.listof specialfiles 272
32.3.0€rMISSIONS e 273
323T FWX o e e 273
3232.threesetsof rwx e 273
32.33. permissionexamples 273
32.3.4.setting permissions with symbolic notation 274
32.3.5. setting permissions with octal notation 275
32.3.6.Umask e e 276
3237.mKAir-m .o e 277
3238B.CPP o o o e e 277
32.4. practice: standard file permissions o 277
32.5.solution: standard file permissions L o 278

Xi

Contents

33.advanced file permissions

331 sticky bitondirectory e
332.setgid bitondirectory
333.setgidand setuidonregularfiles
334.setuidonsudo . ..o e e
33.5. practice: sticky, setuid and setgid bits oL
33.6.solution: sticky, setuid and setgid bits L.

34.access control lists

341 aclinfetc/fstab
342.getfacl e
343setfacl
344 removeanaclentry e
345 removethecompleteacl
3406.theaclmask
347 eiciel . ..o

35.file links

Xii

351.0n0des . . . L
3511 inodecontents
3512. inodetable
3513, inode number e
3514. inodeandfilecontents

352.aboutdirectories.
3521 adirectoryisatable
3522..and

353. hard links
3531 creating hardlinks
3532 .finding hardlinks

354 symboliclinks

355 removing links . . . L e

35.6.practice: links e

357.solution: links

. certifications

Al Certification
All. LPI Linux Professional Institute
Al2. RedHat e
AL13. MYSQL . . . e
Al4. SuseSLA/SCE
Al5. Othercertifications

. keyboard settings

B.1. about keyboard layout
B.2. X Keyboard Layout
B.3. shell keyboard layout

hardware

Cl. buses e
Cll. aboutbuses
Cl12. Jproc/bus
Cl13. Jusrfsbin/lsusb
Cl4. Nar/libfusbutilsfusb.ids
C15. Jusrfsbin/lspci

C2.0interrupts e
C21. aboutinterrupts e
C.22. foroc/interrupts
C23. dmesg e e

Contents

C3. 00 POIrtS o e 301
C31 aboutioports e 301
C32. /proc/ioports 301

Ch. . dma 302
C.41. aboutdma e 302
C42. foroc/dma 302

. GNU Free Documentation License 303

D1 PREAMBLE e e e 303

D.2. APPLICABILITY AND DEFINITIONS e 303

D.3. VERBATIM COPYING e e e e 304

D.4. COPYING IN QUANTITY s s e s e e 305

D.5. MODIFICATIONS o e e e e e e e e 305

D.6. COMBINING DOCUMENTS o s e e e e e 306

D.7. COLLECTIONS OF DOCUMENTS e e e e e 307

D.8. AGGREGATION WITH INDEPENDENTWORKS 307

D.9. TRANSLATION . . . o e e e e e 307

DIO.TERMINATION . . o o e e e e e e e 308

DI FUTURE REVISIONS OF THISLICENSE 308

DI2.RELICENSING e e 308

xiii

Contents

Feel free to contact the author:
- Paul Cobbaut: paul.cobbaut@gmail.com, https://cobbaut.be/
Contributors to the Linux Training project are:

- Serge van Ginderachter: serge@ginsys.eu, build scripts and infrastructure setup

- Ywein Van den Brande: ywein@crealaw.eu, license and legal sections

- Bert Van Vreckem: https://github.com/bertvy, translation to Markdown, new build
scripts, and infrastructure setup

We'd also like to thank our reviewers:

- Wouter Verhelst: w@uter.be, http://grep.be

- Geert Goossens: mail.goossens.geert@gmail.com, http://www.linkedin.com/in/geertg
oossens

- Elie De Brauwer: elie@de-brauwer.be, http://www.de-brauwer.be

- Christophe Vandeplas: christophe@vandeplas.com, http://christophe.vandeplas.com

- Bert Desmet: bert@devnox.be, http://blog.bdesmet.be

- Rich Yonts: richyonts@gmail.com,

Copyright 2007-2024 Netsec BVBA, Paul Cobbaut
This copy was generated on September 18, 2024.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘GNU Free Documentation
License'.

mailto:paul.cobbaut@gmail.com
https://cobbaut.be/
mailto:serge@ginsys.eu
mailto:ywein@crealaw.eu
https://github.com/bertvv
mailto:w@uter.be
http://grep.be
mailto:mail.goossens.geert@gmail.com
http://www.linkedin.com/in/geertgoossens
http://www.linkedin.com/in/geertgoossens
mailto:elie@de-brauwer.be
http://www.de-brauwer.be
mailto:christophe@vandeplas.com
http://christophe.vandeplas.com
mailto:bert@devnox.be
http://blog.bdesmet.be
mailto:richyonts@gmail.com

Abstract

This book is meant to be used in an instructor-led training. For self-study, the intent is to

read this book next to a working Linux computer so you can immediately do every subject,
practicing each command.

This book is aimed at novice Linux system administrators (and might be interesting and
useful for home users that want to know a bit more about their Linux system). However, this
book is not meant as an introduction to Linux desktop applications like text editors, browsers,
mail clients, multimedia or office applications.

More information and free .pdf available at https://hogenttin.github.io/linux-training-
hogent/.

https://hogenttin.github.io/linux-training-hogent/
https://hogenttin.github.io/linux-training-hogent/

Part l.

Introduction to Linux

1. Linux history

(Written by Paul Cobbaut, https://github.com/paulcobbaut/)

This chapter briefly tells the history of Unix and where Linux fits in.

If you are eager to start working with Linux without this blah, blah, blah over history, dis-
tributions, and licensing then jump straight to Part II - Chapter 8. Working with
Directories page 73.

1.1. 1969

All modern operating systems have their rootsin 1969 when Dennis Ritchie and Ken Thomp-
son developed the Clanguage and the Unix operating system at AT&T Bell Labs. They shared
their source code (yes, there was open source back in the Seventies) with the rest of the world,
including the hippies in Berkeley California. By 1975, when AT&T started selling Unix commer-
cially, about half of the source code was written by others. The hippies were not happy that a
commercial company sold software that they had written; the resulting (legal) battle ended
in there being two versions of Unix: the official AT&T Unix, and the free BSD Unix.

Development of BSD descendants like FreeBSD, OpenBSD, NetBSD, DragonFly BSD and PC-
BSD is still active today.

https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/Comparison_of_BSD_operating_systems

1.2. 1980s

In the Eighties many companies started developing their own Unix: IBM created AlX, Sun
SunOS (later Solaris), HP HP-UX and about a dozen other companies did the same. The result
was a mess of Unix dialects and a dozen different ways to do the same thing. And here is
the first real root of Linux, when Richard Stallman aimed to end this era of Unix separation
and everybody re-inventing the wheel by starting the GNU project (GNU is Not Unix). His goal
was to make an operating system that was freely available to everyone, and where everyone
could work together (like in the Seventies). Many of the command line tools that you use
today on Linux are GNU tools.

https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/IBM_AIX
https://en.wikipedia.org/wiki/HP-UX

https://github.com/paulcobbaut/

1. Linux history

1.3. 1990s

The Nineties started with Linus Torvalds, a Swedish speaking Finnish student, buying a
386 computer and writing a brand new POSIX compliant kernel. He put the source code
onling, thinking it would never support anything but 386 hardware. Many people embraced
the combination of this kernel with the GNU tools, and the rest, as they say, is history.

http://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/History_of_Linux
https://en.wikipedia.org/wiki/Linux

https://lwn.net

http://ww.levenez.com/unix/ (a huge Unix history poster)

1.4. 2015

Today more than 97 percent of the world’s supercomputers (including the complete top 10),
more than 80 percent of all smartphones, many millions of desktop computers, around 70
percent of all web servers, a large chunk of tablet computers, and several appliances (dvd-
players, washing machines, dsl modems, routers, self-driving cars, space station laptops...)
run Linux. Linux is by far the most commonly used operating system in the world.

Linux kernel version 4.0 was released in April 2015. Its source code grew by several hun-
dred thousand lines (compared to version 3.19 from February 2015) thanks to contributions of
thousands of developers paid by hundreds of commmercial companies including Red Hat, In-
tel, Samsung, Broadcom, Texas Instruments, IBM, Novell, Qualcomm, Nokia, Oracle, Google,
AMD and even Microsoft (and many more).

http://kernelnewbies.org/DevelopmentStatistics
http://kernel.org
http://ww .top500.0rg

2. distributions

(Written by Paul Cobbaut, https://github.com/paulcobbaut/ with contributions
by Bert Van Vreckem https;//github.com/bertwv/)

This chapter gives a short overview of current Linux distributions.

AlLinuxdistributionisa collection of (usually open source) software on top of a Linux kernel.
A distribution (or short, distro) can bundle server software, system management tools, doc-
umentation and many desktop applicationsina central secure software repository. A
distro aims to provide a common look and feel, secure and easy software management and
often a specific operational purpose.

Let's take a look at some popular distributions.

2.1. Linux and GNU

The Linux Kernel project was started by Linus Torvalds in 1991 while he was a computer sci-
ence student. He wanted to run a UNIX-like operating system on his own PC. Now, a kernel
in itself is not a complete operating system. The kernel does not provide a terminal, tools to
manage files, etc. However, the GNU project (which stands for GNU'’s Not UNIX), started by
Richard Stallman, had been working on a complete operating system since 1983. The GNU
project had a lot of the necessary tools and libraries to make a complete POSIX-compliant
operating system, a.o. the GNU Compiler Collection (GCC), the GNU C Library (glibc), the
GNU Core Utilities (coreutils), the GNU Bash shell, etc. They were also working on a kernel,
called GNU Hurd, but development was prohibitively slow. Indeed, it was not until 2015 that
the Hurd kernel was ready to be actually used.

Long story short, the Linux kernel in combination with the GNU tools and libraries made
a complete operating system. This is why the operating system is often referred to as
GNU/Linux. Both Linux as the GNU projects are open source and released under the GNU
General Public License. This made it easy for third parties to redistribute GNU+Linux and add
other compatible (open source) software packages to form a complete operating system
with everything an end user needs to be productive on the computer. This is what we call
a Linux distribution. The oldest still active distribution is Slackware, which was started in
1993 by Patrick Volkerding. Since then, many distributions have been created, each with
their own goals and target audience. Some distributions (or distro’s in short) are built from
the ground up, but others are based on existing distributions, leading to large “families” of
like-minded distro’s.

Writing a comprehensive overview of all Linux distributions is way beyond the scope of this
course, but itis useful to know about some of the main ones. If you want to know more about
a specific distribution, you can check out the DistroWatch website, which is a great resource
for information about Linux distributions.

2.2. Package management

One ofthe central and identifying components of a Linux Distribution is the default selection
of software and the package management system to install, update and remove software.
For most applications, there is choice in the open source world, so different distributions will

https://github.com/paulcobbaut/
https://github.com/bertvv/
https://kernel.org
https://www.gnu.org
https://posix.opengroup.org
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html
http://www.slackware.com
https://en.wikipedia.org/wiki/Linux_distribution#/media/File:2023_Linux_Distributions_Timeline.svg
https://distrowatch.com

2. distributions

make different decisions on what to include and what to avoid. Sometimes this is regrettably
the cause of dispute and drama in the Linux community, but on the other hand, it is also the
driver of a lot of innovation and diversity and it empowers the user with a lot of freedom of
choice and control.

The package manager was actually one of the most important innovations that Linux pio-
neered in. It is a system that keeps track of all the software installed on a computer and
allows the user to select and install new applications from online package repositories. Hot-
fixes or new releases of the software included in a distribution are made available in these
repositories and can be downloaded and installed with a single command. This makes it very
easy to keep a Linux system up to date and secure. When Apple introduced the App Store
in 2008, it was actually a latecomer to the concept of a central secure software repository.

The concept of an open source package repository also enables reuse of software and li-
braries. Applications don't have to write their own code to do things like read and write files,
manage memory, etc. They can use libraries that are already available on the system and
that are used by other applications. The package manager also takes care of dependencies,
which are other software packages that are required for the software to work. This makes it
very easy to install complex software with a single command.

2.3. The Red Hat family of distributions

Red Hat is one of the first commercial companies that successfully leveraged open source
software as a business strategy. They started in 1993 and grew in the next decades to become
a billion dollar company. In 2019, Red Hat was acquired by IBM for 34 billion dollars and it still
operates as an independent subsidiary.

The flagship product of Red Hat is Red Hat Enterprise Linux, or RHEL in short. RHEL isa com-
mercial Linux distribution, but on release, the source code is made available. The business
model of Red Hat is based on selling support contracts.

RHEL is a stable and secure operating system, with long support cycles, which is why
it is widely used in enterprise environments where the stability of IT infrastructure is of
paramount importance. Enterprise software vendors that target Linux as a platform, usually
certify their software to run on RHEL. This is why RHEL is often used in data centers, cloud
environments and other mission-critical systems.

In order to innovate on the RHEL platform, Red Hat is also involved in the development of the
Fedora distribution. Fedora is a community-driven project that aims to be a cutting-edge,
free and open source operating system that showcases the latest in free and open source
software. It is used as a testbed for new technologies that will eventually make their way into
RHEL. Fedora has a release cycle of 6 months. Where RHEL is particularly suited as a server
operating system, Fedora is an excellent choice as a desktop operating system for power
users and IT professionals.

Since RHEL is open source, it is in principle possible to create a compatible clone of RHEL,
albeit without the support and without Red Hat branding. This is exactly what the CentOS
project did for years. CentOS used to be a community driven project that aimed to be 100%
(bug-for-bug) compatible with RHEL and based on the released source code of all software
included in RHEL. However, in 2014, Red Hat acquired the CentOS project, and later, they
announced that CentOS Linux was going to be replaced by CentOS Stream, which is a rolling
release distribution “upstream” of RHEL. This means that CentOS Stream now takes the place
between Fedora and RHEL, and it is no longer a 100% compatible clone of RHEL anymore.

This incensed many users and organizations that relied on CentOS as a free and compatible
alternative to RHEL. The CentOS project was forked, and the Rocky Linux project was started
by Gregory Kurtzer, who was also one of the original founders of CentOS. The goal of Rocky
Linux is to be a 100% compatible replacement for CentOS Linux. Likewise, AlmalLinux was
started by CloudLinux, another company that was involved in the CentOS project. These
RHEL-like distributions are sometimes referred to as “Enterprise Linux” or EL.

10

https://www.redhat.com
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://getfedora.org
https://www.centos.org
https://rockylinux.org
https://almalinux.org

2.4. The Debian family of distributions

Distinctive features of the Red Hat family of distributions are:

- The use of the RPM package format (Red Hat Package Management) and the dnf pack-
age manager

- The systemd init system

- The firewalld firewall management tool

- The SELinux security framework

- The Anaconda installer

- The Cockpit web-based management interface

- Their own container runtimes, runc and crun and management tools podman and buil-
dah (instead of Docker)

Oracle Enterprise Linux is Oracle's commercial Linux distribution, put in the market as a di-
rect competitor to RHEL. Scientific Linux was a community driven project that was used
by scientific institutions like CERN and Fermilab, but it was discontinued in 2021. The final
maintenance window for Scientific Linux 7 is June 30, 2024. After that, users are advised to
migrate to AlmaLinux. The Amazon Linux distribution is a RHEL-like distribution that is used
as the default operating system for Amazon Web Services (AWS) EC2 instances.

2.4. The Debian family of distributions

There is no company behind Debian. Instead there are thousands of well organised devel-
opers that elect a Debian Project Leader every two years. Debian is seen as one of the most
stable Linux distributions. It is also the basis of every release of the well-known Ubuntu (see
below). Debian comes in three versions: stable, testing and unstable. Every Debian release
is named after a character in the movie Toy Story.

Canonical, a company founded by South African entrepreneur Mark Shuttleworth, started
sending out free compact discs with Ubuntu Linux in 2004 and quickly became popular for
home users (many switching from Microsoft Windows). Canonical wants Ubuntu to be an
easy to use graphical Linux desktop without need to ever see acommand line. Of course they
also want to make a profit by selling commercial support for Ubuntu. Ubuntu is known for
their Long Term Support (LTS) releases, which are supported for 5 years (or 10 years for a fee).
Intermediate releases come out every 6 months (in April and October) and are supported for
9 months. Releases are named after the year and month of the release, e.g. 19.10 for October
2019. LTS releases come out every even year in April, e.g. 22.04 and 24.04. Canonical also
has the reputation of going their own way and doing things differently from the rest of the
Linux community. For example, they developed their own init system, Upstart (which was
later abandoned and replaced by systemd), and their own display server, Mir (which was later
replaced by Wayland), a desktop environment (Unity, later replaced with Gnome), etc. Some
of these decisions were controversial and have led to a lot of criticism, but the strength of
the open source community lies precisely in the freedom to make different choices, which
is a driver for innovation.

Distinctive features of the Debian family of distributions are:

- The use of the deb package format and the apt package manager (Advanced Package
Tool)

- The systemd init system

- The ufw firewall management tool

- The AppArmor security framework

- The Debian-installer installer

- The Docker container runtime and management tools

Linux Mint, Edubuntu and many other distributions with a name ending on -buntu are based
on Ubuntu and thus share a lot with Debian. Kali Linux is another Debian-based distribution
that is specifically designed for digital forensics and penetration testing. It comes with a lot
of pre-installed tools for hacking and security testing. Kali is not suitable for daily use as a

n

https://www.oracle.com/linux/
https://www.scientificlinux.org
https://aws.amazon.com/amazon-linux-2/
https://www.debian.org
https://ubuntu.com
https://linuxmint.com
https://www.kali.org

2. distributions

desktop operating system, but it is very popular among security professionals and hobby-
ists. The popular mini-computer Raspberry Pi has its own Debian-based distribution called
Raspberry Pi OS.

2.5. Notable “independent” distributions

Apart from the two big families of distributions, i.e. Red Hat and Debian families, there are
many other distributions that are not based on either of these. Some of the most notable
ones are:

- Alpine Linux: an independent non-commercial, general purpose distribution with a fo-
cus on security and simplicity. Alpine Linux is very small and lightweight, and it is often
used in containers.

- Arch Linux: another independent general purpose distribution. Arch Linux is a rolling
release distribution, which means that you install it once and then continuously update
individual packages when new versions become available. The distribution itself does
not have an overarching (see what | did there?) release cycle. Arch has its own package
manager, Pacman. One of the most notable features of Arch Linux is its outstanding
documentation, which is very extensive and well written and even quite useful for users
of other distributions. Installing Arch Linux is not as straightforward as installing other
distributions: you start with a minimal system with the kernel and a shell, and then you
build up the system to your own liking. This is not for novice users, but it is a great way
to learn about the inner workings of a Linux system.

- openSUSE: a general purpose community driven distribution that is sponsored by SUSE,
a German company that also offers commercial support for derivative distro's SUSE
Linux Enterprise Server (SLES) and Desktop (SLED). openSUSE is known for its YaST (Yet
another Setup Tool) configuration tool, which is a central place to configure many as-
pects of the system. openSUSE comes in two flavours: Leap and Tumbleweed. Leap is
a regular release distribution with a fixed release cycle, while Tumbleweed is a rolling
release distribution.

2.6. Which to choose?

If you ask 10 people what the best Linux distribution is, chances are that you will get 20
different answers. Posting it as a question on a forum may lead to a discussion that goes
on for weeks or months, if not years. You will get a lot of passionate and sometimes even
insightful opinions, but in the end you won't be none the wiser. So giving good advice that
is universally applicable is very hard, indeed.

Below are some very personal opinions (albeit informed by experience) on some of the most
popular Linux distributions. Keep in mind that any of the below Linux distributions can be a
stable server and a nice graphical desktop client.

Distribution

name Reason(s) for using

AlmaLinux You want a stable Red Hat-like server OS without commercial support
contract.

Arch You want to know how Linux really works and want to take your time
to learn.

Debian An excellent choice for servers, laptops, and any other device.

Fedora You want a Red Hat-like OS on your laptop/desktop.

Kali You want a pointy-clicky hacking interface.

12

https://www.raspberrypi.org/software/operating-systems/
https://www.alpinelinux.org
https://archlinux.org
https://www.opensuse.org
https://www.suse.com/products/server/
https://www.suse.com/products/server/
https://www.suse.com/products/desktop/

2.6. Which to choose?

Distribution

name Reason(s) for using

Linux Mint You want a personal graphical desktop to play movies, music and
games.

RHEL You are a manager and need good commercial support.

RockyLinux You want a stable Red Hat-like server OS without commercial support
contract.

Ubuntu Very popular, suited for beginners and based on Debian.

Desktop

Ubuntu Server (LTS particulary) You want a Debian-like OS with commercial support.

When you are new to Linux, and are looking for a distribution with a graphical desktop and all
the tools that you need as a daily driver, check out the latest Linux Mint (suitable for computer
novices and experienced computer users alike) or Fedora (recommmended for power users
and IT professionals).

If you only want to practice the Linux command line, or are interested in the use of Linux as
a server, then install a VM with the latest release of either Debian stable and/or AlmaLinux
(without graphical interface)'.

As you gain experience, you can try out other distributions and see what you like best. Good
luck on your journey and enjoy the ride!

TRemark that this advice was originally written in 2015 and basically still holds in 2024. The only amendment is
that AlmaLinux has taken the place of CentOS as a recommendation for a server OS.

13

3. licensing

(Written by Ywein Van den Brande, with contributions by: Paul Cobbaut, https:
//github.com/paulcobbaut/)

This chapter briefly explains the different licenses used for distributing operating systems
software.

Many thanks go to Ywein Van den Brande for writing most of this chapter.

Ywein is an attorney at law, co-author of The International FOSS Law Book and author of
Praktijkboek Informaticarecht (in Dutch).

Voogies Van dan Brarcke

Het Praktijkboek Informaticarecht:

Recht rendeert voor uw onderneming

H Watu most weten

NSRS YOO 13H

‘ovar Informaticaracht
‘gebundeld in een
praktische on
doskundigo gids.

The International Free

and
Open Source Software
w Book

:.ompuimm_

http://ifosslawbook.org
http://ww.crealaw.eu

3.1. about software licenses

There are two predominant software paradigms: Free and Open Source Software (FOSS)
and proprietary software. The criteria for differentiation between these two approaches
is based on control over the software. With proprietary software, control tendsto lie more
with the vendor, while with Free and Open Source Software it tends to be more weighted
towards the end user. But even though the paradigms differ, they use the same copyright
laws to reach and enforce their goals. From a legal perspective, Free and Open Source
Software can be considered as software to which users generally receive more rights via
their license agreement than they would have with a proprietary software license,yet
the underlying license mechanisms are the same.

Legal theory states that the author of FOSS, contrary to the author of public domain soft-
ware, has in no way whatsoever given up his rights on his work. FOSS supports on the rights
of the author (the copyright) to impose FOSS license conditions. The FOSS license condi-
tions need to be respected by the user in the same way as proprietary license conditions.
Always check your license carefully before you use third party software.

Examples of proprietary software are AIX from IBM, HP-UX from HP and Oracle Database
11g. You are not authorised to install or use this software without paying a licensing fee.
You are not authorised to distribute copies and you are not authorised to modify the closed
source code.

15

https://github.com/paulcobbaut/
https://github.com/paulcobbaut/

3. licensing

3.2. public domain software and freeware

Software that is original in the sense that it is an intellectual creation of the author benefits
copyright protection. Non-original software does not come into consideration for copy-
right protection and can, in principle, be used freely.

Public domain software is considered as software to which the author has given up all rights
and on which nobody is able to enforce any rights. This software can be used, reproduced or
executed freely, without permission or the payment of a fee. Public domain software can in
certain cases even be presented by third parties as own work, and by modifying the original
work, third parties can take certain versions of the public domain software out of the public
domain again.

Freeware is not public domain software or FOSS. It is proprietary software that you can use
without paying a license cost. However, the often strict license terms need to be respected.

Examples of freeware are Adobe Reader, Skype and Command and Conquer: Tiberian Sun
(this game was sold as proprietary in 1999 and is since 2011 available as freeware).

3.3. Free Software or Open Source Software

Both the Free Software (translatestovrije softwarein Dutch andto Logiciel Librein
French) and the Open Source Software movementlargely pursue similar goalsand endorse
similar software licenses. But historically, there has been some perception of differentiation
due to different emphases. Where the Free Software movement focuses on the rights
(the four freedoms) which Free Software provides to its users, the Open Source Software
movement points to its Open Source Definition and the advantages of peer-to-peer software
development.

Recently, the term free and open source software or FOSS has arisen as a neutral alternative.
A lesser-used variant is free/libre/open source software (FLOSS), which uses libre to clarify
the meaning of free as in freedom rather than asinat no charge.

Examples of free software are gcc, MySQL and gimp.

Detailed information about the four freedoms can be found here:
http://ww.gnu.org/philosophy/free-sw.html

The open source definition can be found at:

http://ww .opensource.org/docs/osd

The above definition is based on the Debian Free Software Guidelines available here:

http://ww .debian.org/social_contract#guidelines

16

3.4. GNU General Public License

3.4. GNU General Public License

More and more software is being released under the GNU GPL (in 2006 Java was released
under the GPL). This license (v2 and v3) is the main license endorsed by the Free Software
Foundation. It's main characteristic is the copyleft principle. This means that everyone
in the chain of consecutive users, in return for the right of use that is assigned, needs to dis-
tribute the improvements he makes to the software and his derivative works under the same
conditions to other users, if he chooses to distribute such improvements or derivative works.
In other words, software which incorporates GNU GPL software, needs to be distributed in
turn as GNU GPL software (or compatible, see below). It is not possible to incorporate copy-
right protected parts of GNU GPL software in a proprietary licensed work. The GPL has been
upheld in court.

3.5. using GPLVv3 software

You can use GPLv3 software almost without any conditions. If you solely run the software
you even don't have to accept the terms of the GPLv3. However, any other use - such as
modifying or distributing the software - implies acceptance.

In case you use the software internally (including over a network), you may modify the soft-
ware without being obliged to distribute your modification. You may hire third parties to
work on the software exclusively for you and under your direction and control. But if you
modify the software and use it otherwise than merely internally, this will be considered as
distribution. You must distribute your modifications under GPLV3 (the copyleft principle).
Several more obligations apply if you distribute GPLv3 software. Check the GPLV3 license
carefully.

You create output with GPLv3 software: The GPLv3 does not automatically apply to the out-
put.

3.6. BSD license

There are several versions of the original Berkeley Distribution License. The most common
one is the 3-clause license ("New BSD License” or "Modified BSD License”).

This is a permissive free software license. The license places minimal restrictions on how the
software can be redistributed. This is in contrast to copyleft licenses such as the GPLv. 3
discussed above, which have a copyleft mechanism.

This difference is of less importance when you merely use the software, but kicks in when
you start redistributing verbatim copies of the software or your own modified versions.

3.7. other licenses

FOSS or not, there are many kind of licenses on software. You should read and understand
them before using any software.

17

18

3. licensing
3.8. combination of software licenses

When you use several sources or wishes to redistribute your software under a different li-
cense, you need to verify whether all licenses are compatible. Some FOSS licenses (such
as BSD) are compatible with proprietary licenses, but most are not. If you detect a license

incompatibility, you must contact the author to negotiate different license conditions or re-
frain from using the incompatible software.

Part Il.

Installing Linux

19

4. installing Debian 8

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

This module is a step by step demonstration of an actual installation of Debian 8 (also known
as Jessie).

We start by downloading an image from the internet and install Debian 8 as a virtual ma-
chine in Virtualbox. We will also do some basic configuration of this new machine like
setting an ip address and fixing a hostname.

This procedure should be very similar for other versions of Debian, and also for distributions
like Linux Mint, xubuntu/ubuntu/kubuntu or Mepis. This procedure can also be helpful if
you are using another virtualization solution.

Go to the next chapter if you want to install Cent0S, Fedora, Red Hat Enterprise Linux,

4.1. Debian

Debianisone ofthe oldest Linux distributions. | use Debian myself on almost every computer
that | own (including raspbian on the Raspberry Pi).

Debian comes in releases named after characters in the movie Toy Story. The Jessie
release contains about 36000 packages.

Table 4.1.: Debian releases

name number year
Woody 3.0 2002
Sarge 3.1 2005
Etch 4.0 2007
Lenny 50 2009
Squeeze 6.0 2011
Wheezy 7 2013
Jessie 8 2015

There is never a fixed date for the next Debian release. The next version is released when it
is ready.

4.2. Downloading

All these screenshots were made in November 2014, which means Debian 8 was still in 'test-
ing' (but in 'freeze’, so there will be no major changes when it is released).

Download Debian here:

21

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

4. installing Debian 8

T Debian -- Getting Debian - Iceweasel + - 0OX

File Edit View History Bookmarks Tools Help
* & https ww.debian.org/distrib/ v & | |@~ DuckDuckGo B 48 ¥+ # =

|@ Debian -- Getting Debian % | ik |

Search
(3 About Debian Getting Debian Support Developers' Corner
debian / getting debian

Getting Debian

Debian is distributed freely over Internet. You can download all of it from any of our
mirrors. The Installation Manual contains detailed installation instructions.

If you simply want to install Debian, these are your options:

Download an installation Try Debian live before

image installing

Depending on your Internet connection, You can try Debian by booting a live

vnill mav dnwnlnar either nf the svstem from a CD DVD nr ISR kew E‘

%

After a couple of clicks on that website, | ended up downloading Debian 8 (testing) here. It
should be only one click once Debian 8 is released (somewhere in 2015).

ol

e Index of /cdimage/weekly-builds/amdé4/iso-cd - lceweasel 4+ - 0OX
File Edit View History Bookmarks Tools Help
€ debian.org/cdimage/weekly-builds/amdéd/iso-cd/ ¥ & @~ DuckDuckGo B Wwae 44 V =
|Q Index of /cdimage/wee... x | dh |
51 5HA5125UMS 2014-11-03 08:24 14K [:]
SHAS125UMS . sign 2014-11-03 68:24 836
debian-testing-amd&4-CD-1.is0 2014-11-03 08:24 616M
debian-testing-amd&4-CD-2.is0 2014-11-03 08:24 642M
debian-testing-amd&4-CD-3.is0 2014-11-03 08:24 644M
debian-testing-amd&4-CD-4.is0 2014-11-03 08:24 647TM
debian-testing-amd&4-CD-5.is0 2014-11-03 08:24 555M
debian-testing-amd&4-CD-6.is0 2014-11-03 08:24 G6O5M
debian-testing-amd&4-CD-7.iso 2014-11-03 08:24 625M B
debian-testing-amdG4-CD-8.is0 2014-11-03 08:24 644M

debian-testing-amd64-kde-CD-1.is0 2014-11-03 07:35 616M

debian-testing-amd64-1xde-CD-1.iso0 2014-11-03 07:35 640M

debian-testing-amd64-netinst.iso 2014-11-63 07:34 231M

debian-testing-amd64-xfce-CO-1.iso 2014-11-63 07:35 G641M

Apache/2.4.9 (Unix) Server at cdimage.debian.org Port 80]

You have many other options to download and install Debian. We will discuss them much
later.

This small screenshot shows the downloading of a netinst .iso file. Most of the software will
be downloaded during the installation. This also means that you will have the most recent
version of all packages when the install is finished.

Library

Organize ¥ Clear Downloads Search Downloads @,
> @ History debian-testing-amd64-netinst.iso
<l Downloads J
> Tags 3 minutes, 32 seconds remaining — 15.5 of 231 MB (1.0 MB/sec)

b [E All Bookmarks

22

4.2. Downloading

| already have Debian 8 installed on my laptop (hence the student@linux prompt). Anyway,
this is the downloaded file just before starting the installation.

student@linux:~$ 1s -hl debian-testing-amd64-netinst.iso
-rw-r--r-- 1 paul paul 231IM Nov 10 17:59 debian-testing-amd64-netinst.iso

Create a new virtualbox machine (I already have five, you might have zero for now). Click the
New button to start a wizard that will help you create a virtual machine.

Oracle VM VirtualBox Manager

File Machine Help

1Y roc G @ -

New Sefttings Start
=Ml Centoss =] General [=] Preview =
L @) Powered Off Name: Debl0
Operating System: Debian (64-bit)
Settings File Location: /homefaschapelle/
(o = .
— VirtualBox VMs/
@ _— Deblo
=0 serverdd & system
L @) Powered Off Base Memory: 4096 MB

Boot Order: Floppy. Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging,
B server54 KVM Paravirtualization
¥ @) powered Off

=] pisplay

Video Memory: 16 MB
Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
Recording: Disabled

Storage

Controller: IDE
IDE Secondary Master: [Optical Drive] Empty
Controller: SATA
SATA Port 0 Debl0-disk001.vdi (Nermal, 32.00 GB)

o Audio

Host Driver: PulseAudio
Controller: ICH AC97

BF Network
Adapter 1: Intel PRO/1000 MT Desktop (NAT)

The machine needs a name, this screenshot shows that | named it server42.
Create Virtual Machine
Name and operating system

Please choose a descriptive name for the new
virtual machine and select the type of operating
system you intend to install on it. The name you
choose will be used throughout VirtualBox to
identify this machine.

Name: |serverd?]

Type: |Linux x| @

Version: [Debian (64 bit) =l

Hide Description -::B_ackl MNext = I Cancel

23

4. installing Debian 8
Most of the defaults in Virtualbox are ok.

512MB of RAM is enough to practice all the topics in this book.

((((((

We do not care about the virtual disk format.

Create Virtual Hard Disk X

Hard disk file type

Please choose the type of file that you would like to use for the new
virtual hard disk. If you do not need to use it with other
virtualization software you can leave this setting unchanged.

& VDI (VirtualBox Disk Image)

WHD (Virtual Hard Disk)
WMDK (Virtual Machine Disk)

~ .

Expert Mode Cancel

Choosing dynamically allocated will save you some disk space (for a small performance
hit).

chchch

8GB should be plenty for learning about Linux servers.

24

4.2. Downloading

Create Virtual Hard Drive 4+ 0 X
File location and size

Please type the name of the new virtual hard drive file into the
box below or click on the folder icon to select a different folder
to create the file in.

|servera2 =)

Select the size of the virtual hard drive in megabytes, This size
is the limit on the amount of file data that a virtual machine will
be able to store on the hard drive.

} [8.00 GB

4.00 MB 2.00TB

= Back | Create I Cancel

This finishes the wizard. You virtual machine is almost ready to begin the installation.

First, make sure that you attach the downloaded .iso image to the virtual CD drive. (by open-
ing Settings, Storage followed by a mouse click on the round CD icon)

-] serverd2 - Settings + 0 X
E General ‘ Storage ‘
[system
Storage Tree ——————— | Atftributes
Display e —
G itroller: 1D 3 5 Name: IIDE
fr Audio “.(3) debian-testing-amd64-... Type: [Piixa =]
& Network 4 Controller: SATA ¥ Use Host I/0 Cache
& serial Ports ‘@ serverazvdi
& usB
[Shared Folders

oK I Cancel Help

Personally | also disable sound and usb, because | never use these features. | also remove
the floppy disk and use a PS/2 mouse pointer. This is probably not very important, but | like
the idea that it saves some resources.

Now boot the virtual machine and begin the actual installation. After a couple of seconds
you should see a screen similar to this. Choose Install to begin the installation of Debian.

25

4. installing Debian 8

serverd2 [Running] - Oracle VM VirtualBox
Machine ‘iew Devices Help

_Debian, GHI-ISinmes ilstaller boot: menw

Giraphica Nt

Advanced options

Help

Install witht specch sunthesis

Press ENTER to boot or TAB to edit a menu entry

B @ @ P @ (3| (9 (2] Left Winkey

First select the language you want to use.

serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

[11] select a language |

Choose the language to be used for the installation process. The selected language will
also he the default language for the installed system.

Language:

G Mo localization
Albanian Shoip
Arahic e
Asturian Asturianu
Basgue Euskara
Belarusian Benapyckas
Bosnian Bosanski
Bulgarian BrArapcKu
Catalan Catald
Chinese (Simplified) dar (T 1E D
Chinese (Traditional) R (ERE)
Croatian Hrvatski
Czech Cestina
Danish Dansk

Hed
English Englis
Esperanto Esperanto
Estaonian Eesti
Finnish Suomi
French Francais
Galician Galego
German Deutsch
Greek EXANULED

<Go Back>

{Enter> activates huttons

B @ &P @ [(28] Left Winkey

Choose your country. This information will be used to suggest a download mirror.

26

4.2. Downloading

FE serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

[11] select your location

The selected location will bhe used to set your time zone and also for example to help
select the system locale. Mormally this should be the country where you live.

This is a shortlist of locations based on the language you selected. Choose "other" if
your location is not listed.

Country, territory or area:

Antigua and Barbuda
Australia
Botswana
Canada

Hong Kong
India

Ireland

New Zealand
Migeria
Philippines
Singapore
South Africa
United Kingdom
United States
Zamhia

Z imbabuwe

<GO Back>

<Tab>» me selects; <Enter es buttaor

B @ P @ | (2] Left Winkey

Choose the correct keyboard. On servers this is of no importance since most servers are
remotely managed via ssh.

FE serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

[1!] Configure the keyboard

Keymap to

Albanian

Arahic

Asturian

Bang ladesh
Belarusian
Bengali

Belgian

Bosnian
Brazilian
British English
Bulgarian
Bulgarian (phaonetic layout)
Canadian French
Canadian Multilingual
Catalan

Chinese
Croatian

Czech

Danish

Dutch

Dvaorak

Dzongkha
Ezperanto
Estaonian
Ethiopian

<Go Back>

huttar

& @ e 0w 3 | (9 (2] Left WinKey

Enter a hostname (with fqdn to set a dnsdomainname).

27

4. installing Debian 8

FE serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

[1] configure the network
FPlease enter the hostname for this system.

The hostname is a single word that identifies your system to the network. If you don't
know what your hostname should be, consult your network administrator. If you are setting
up your own home network, you can make something up here.

Hosthame :

<Go Back> <Cont inue>

huttar

B @ P @ | (2] Left Winkey

Give the root user a password. Remember this password (or use hunter2).

serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

[11] Set up users and passwords

You need to set a password for 'root', the sustem administrative account. A malicious or
ungualified user with root access can have disastrous results, so you should take care fo
choose a root password that is not easy to guess. It should not he a word found in
dictionaries, or a word that could he easily associated with you.

A good password will contain a mixture of lettiers, numbers and punctuation and should he
changed at regular interwvals.

The root user should not have an empty password. If you leave this empty, the root
account will be disabled and the system's initial user account will he given the power to
hecome root using the "sudo" command.

Mote that you will not be ahle to see the password as you fupe it.

Root password:

<Go Back> <Cant inue>

B @ P @ {3 | (9 (8] Left WinKey

It is adviced to also create a normal user account. | don't give my full name, Debian 8 accepts
an identical username and full name paul.

28

4.2. Downloading

FE serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

[11] set up users and passwords |

A user account will be created for you to use instead of the root account for
non-administrative activities.

FPlease enter the real name of this user. This information will be used for instance as
default origin for emails sent by this user as well as any program which displays or uses
the user's real name. Your full name is a reasonable choice.

Full name for the new user:

<Go Back> <Cont inue>

B @ P @ 3 | (9 (2] Left Winkey

The use entire diskreferstothe virtual disk that you created beforein Virtualbox..

Fe serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

[11] Partition disks |
The installer can guide you through partitioning a disk (using different standard
schemes) or, if you prefer, you can do it manually. With guided partitioning you will
still have a chance later to review and customise the results.

If you choose guided partitioning for an entire disk, you will next bhe asked which disk
should he used.

Partitioning method:

Guided - use entire disk and set up LVH
Guided - use entire disk and set up encrypted LWH
Manual

<GO Back>

B @ P @ 3 | (9 (2] Left Winkey

Again the default is probably what you want. Only change partitioning if you really know
what you are doing.

29

4. installing Debian 8

FE serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

['] Partition disks
selected for partitioning:
SC513 (0,0,0) i(sda) - ATA YBOX HARDDISK: 5.6 GB

The disk can be partitioned using one of several different schemes. If you are unsure,
choose the first one.

Partitioning scheme:
2 for new L
Separate shome partition
Separate shome, fvar, and stmp partitions

<GO Back>

huttar

B @ P @ | (2] Left Winkey

Accept the partition layout (again only change if you really know what you are doing).

serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

[11] Partition disks |

This is an overview of your currently configured partitions and mount points. Select a
partition to modify its settings (file system, mount point, etc.), a free space to create
partitions, or a device to initialize its partition tahle.

Guided partitioning

Configure software RAID

Configure the Logical Yolume Manager
Configure encrypted volumes
Configure iSCSI wolumes

SCSI3 (0,0,0) (sda) - 8.6 GB ATA YBOX HARDDISK
#1 primary 8.2 GB i extd /
#5 logical 401.6 MB i swap suwap
Undo changes to partitions
Finish pa i

<GO Back>

<F1> for help; - :
@) & o {0 [[2] Left Winkey

Thisis the point of no return, the magical moment where pressing yes will forever erase data
on the (virtual) computer.

30

4.2. Downloading

Fﬂ serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

[11] Partition disks |

If you continue, the changes listed helow will bhe written to the disks. Otherwise, you
will be able to make further changes manually.

The partition tables of the following devices are changed:
SC513 (0,0,0) (sda)

The following partitions are going to he formatted:
partition #1 of SCSI3 (0,0,0) (sda) as extd
partition #5 of SCSI3 (0,0,0) (sda) as swap

Write the changes to disks?

huttar

B @ P @ | (2] Left Winkey

Software is downloaded from a mirror repository, preferably choose one that is close by (as
in the same country).

FE serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

[!] Contigure the package manager

The goal is to find a mirror of the Dehian archive that is close to you on the network --
he aware that nearby countries, or even your own, may not be the hest choice.

Dehian archive mirror country:

enter information manually +
Algeria
Argentina
Australia
Austria

Bang ladesh
Belarus

Iz M

Bosnia and Herzegovina
Brazil
Bulgaria
Canada

Chile

China

Colombia

Costa Rica
Croatia

Czech Republic
Denmark

El Salvador
Estonia
Finland

France

<Go Back>

; <Enter> activates buttor

& @ e 0w 3 | (9 (2] Left WinKey

This setup was done in Belgium.

3]

4. installing Debian 8

FE serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

[1] Configure the package manager |

FPlease select a Debian archive mirror. You should use a mirror in your country or region
if you do not know which mirror has the best Internet connection to you.

Usually, fip.<your country code>.debian.org is a good choice.

Debian archive mirror:

ehian.org
mirror.as3s701.net
http.debian.net
cdn.debian.net
ftp.debian.skynet .be
he.mirror.eurid.eu

<GO Back>

B @ P @ 3 | (9 (2] Left Winkey

Leave the proxy field empty (unless you are sure that you are behind a proxy server).

Fe serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

[1] Configure the package manager |

If you need to use a HTTP proxy to access the outiside world, enter the proxy information
here. Otherwise, leave this blank.

The proxy information should be given in the standard form of
"http:// [[user] [:passl@lhost [port]l .

HTTP proxy information (hlank for nonej:

<Go Back> <Cont inue>

B @ P @ 3 | (9 (2] Left Winkey

Choose whether you want to send anonymous statistics to the Debian project (it gathers
data about installed packages). You can view the statisticshere http://popcon.debian.org/.

32

4.2. Downloading

FE serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

[!] Configuring popularity-contest
The system may anonymously supply the distribution developers with statistics about the
most used packages on this system. This information influences decisions such as which
packages should go on the first distribution CD.

If you choose to participate, the automatic submission script will run once every week,
sending statistics to the distribution developers. The collected statistics can be wiewed
on http://popcon.debian.orgs.

This choice can be later modified by running "dpkg-reconfigure popularity-contest'.
Participate in the package usage survey?

<GO Back>

huttar

B @ P @ | (2] Left Winkey

Choose what software to install, we do not need any graphical stuff for this training.

F@ serverd2 [Running] - Oracle VM VirtualBox

Machine View Devices Help

[11 Software selection
At the moment, only the core of the sustem is installed. To tune the sustem to your
needs, you can choose to install one or more of the following predefined collections of
software.

Choose software to install:

<Go Back:>

B @ @ {3 (9 [©)Left Winkey

The latest versions are being downloaded.

33

4. installing Debian 8

Fa serverd2 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

1 Select and install software

Retrieving file 264 of 25

@ @ e8] @ {3 [(2 (2] Left Winkey

Say yes to install the bootloader on the virtual machine.

FE serverd2 [Running] - Oracle VM VirtualBox

Machine View Devices Help

[1]1 Install the GRUB boot loader on a hard disk

It seems that this new installation is the only operating system on this computer. If so,
it should be safe to install the GRUB boot loader to the master boot record of your first
hard drive.

Warning: If the installer failed to detect another operating system that is present on
your computer, modifying the master hoot record will make that operating sustem
temporarily unbootable, though GRUB can be manually configured later to hoot it.

Install the GRUE boot loader to the master boot record?

<Go Back:>

B @ P {3 (2 (2] Left Winkey

Booting for the first time shows the grub screen

34

4.2. Downloading

ﬁ serverd2 [Running] - Oracle VM VirtualBox

Machine ‘iew Devices Help

GMU GRUE we

*Debian GNUAL inux

B) 2P] o {0 [(9 (2] Left Winkey

A couple seconds later you should see a lot of text scrolling of the screen (dmesg). After which
you are presented with this getty and are allowed your first logon.

FE serverd42 [Running] - Oracle VM VirtualBox 4+ - 0OX

Machine Wiew Devices Help

B o2 | ([Left Winkey

You should now be able to log on to your virtual machine with the root account. Do you
remember the password ? Was it hunter2 ?

35

4. installing Debian 8

ﬁ serverd42 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

Dehian GHU/Linus

pith ABSOLUTELY MO WARRAMTY, to the extent
law.

B o2 | ([Left Winkey

The screenshots in this book will look like this from now on. You can just type those com-
mands in the terminal (after you logged on).

root@linux:~# who am i

root ttyl 2014-11-10 18:21
root@linux:~# hostname

servers4?

rootalinux:~# date

Mon Nov 10 18:21:56 CET 2014

4.3. virtualbox networking

You can also log on from remote (or from your Windows/Mac/Linux host computer) using
sshorputty. Change the network settingsin the virtual machine to bridge. This will enable
your virtual machine to receive an ip address from your local dhcp server.

The default virtualbox networking is to attach virtual network cards to nat. This screenshiot
shows the ip address 10.0.2.15 when on nat:

root@linux:~# ifconfig
etho Link encap:Ethernet HWaddr 08:00:27:f5:74:cf
inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fef5:74cf/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:11 errors:0 dropped:@ overruns:0@ frame:0
TX packets:19 errors:0 dropped:0 overruns:@ carrier:0
collisions:0 txqueuelen:1000
RX bytes:2352 (2.2 KiB) TX bytes:1988 (1.9 KiB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:@ overruns:0@ frame:0
TX packets:@ errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

36

-] serverd2 - Settings + 0 X
=l General ‘ Network ‘
[system
Display Adapter 1 | Adapter 2 | Adapter 3 | .e'-.dapteril
B storage ¥ Enable Metwork Adapter
B Audio Attached to: INAT -]
= Network . Not attached |
g? Network Names =
¢% serial Ports < Advanced NAT Network
- Bridged Adapter H
& UsB Adapter Type; Internal Network — Ibron oo M) |
=1 Shared Fold Host-only Adapter|Bridged Adapter
ared Folders Promiscuous Mode; Generic Driver | _|
MAC Address; [080027F574CF =)
[¥ Cable Connected
Port Forwarding |
oK I Cancel | Help |

4.3. virtualbox networking

By shutting down the network interface and enabling it again, we force Debian to renew an

ip address from the bridged network.

root@linux:~# # do not run ifdown while connected over ssh!

rootlinux:~# ifdown etho

Killed old client process

Internet Systems Consortium DHCP Client 4.3.1
Copyright 2004-2014 Internet Systems Consortium.
All rights reserved.

For info, please visit https://ww.isc.org/software/dhcp/

Listening on LPF/eth0/08:00:27:f5:74:cf
Sending on LPF/eth0/08:00:27:f5:74:cf
Sending on Socket/fallback
DHCPRELEASE on eth® to 10.0.2.2 port 67
rootlinux:~# # now enable bridge in
root@linux:~# ifup etho

Internet Systems Consortium DHCP Client 4.3.1
Copyright 2004-2014 Internet Systems Consortium.
All rights reserved.

virtualbox settings

For info, please visit https://ww.isc.org/software/dhcp/

Listening on LPF/eth0/08:00:27:f5:74:cf
Sending on LPF/eth0/08:00:27:f5:74:cf
Sending on Socket/fallback

DHCPDISCOVER on eth@® to 255.255.255.255 port 67 interval 8
DHCPDISCOVER on eth@® to 255.255.255.255 port 67 interval 8

DHCPREQUEST on eth® to 255.255.255.255 port 67
DHCPOFFER from 192.168.1.42

DHCPACK from 192.168.1.42

bound to 192.168.1.111 -- renewal in 2938 seconds.
root@linux:~# ifconfig etho

etho Link encap:Ethernet

HwWaddr 08:00:27:f5:74:cf

inet addr:192.168.1.111

Bcast:192.168.1.255 Mask:255.255.255.0

inet6 addr: fe80::a00:27ff:fef5:74cf/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:15 errors:0 dropped:@ overruns:0 frame:0
TX packets:31 errors:@ dropped:® overruns:@ carrier:0
collisions:0 txqueuelen:1000

RX bytes:3156 (3.0 KiB) TX bytes:3722 (3.6 KiB)

root@linux:~#

37

4. installing Debian 8

Here isan example of ssh to this freshly installed computer. Note that Debian 8 hasdisabled
remote root access, so i need to use the normal user account.

student@linux:~$ ssh paul®192.168.1.111
student®192.168.1.111's password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/x/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

student@linux:~$

student@linux:~$ su -

Password:

rootalinux:~#

TODO: putty screenshot here...

4.4, setting the hostname

The hostname of the server is asked during installation, so there is no need to configure this
manually.

root@linux:~# hostname

servers4?

root@linux:~# cat /etc/hostname

servers4?

root@linux:~# dnsdomainname

paul.local

rootlinux:~# grep server42 /etc/hosts

127.0.1.1 server42.paul.local server4?

root@linux:~#

4.5. adding a static ip address

This example shows how to add a static ip address to your server.

You can use ifconfig to set a static address that is active until the next reboot (or until the
next ifdown).

a
root@linux:~# ifconfig eth0:0 10.104.33.39

Adding a couple of lines to the /etc/network/interfaces file to enable an extra ip address
forever.

root@linux:~# vi /etc/network/interfaces
rootalinux:~# tail -4 /etc/network/interfaces
auto etho:0

iface eth@:0 inet static

address 10.104.33.39

netmask 255.255.0.0

38

4.6. Debian package management

root@linux:~# ifconfig
etho Link encap:Ethernet HWaddr 08:00:27:f5:74:cf
inet addr:192.168.1.111 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fef5:74cf/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:528 errors:0 dropped:0 overruns:0 frame:0
TX packets:333 errors:@ dropped:@ overruns:0 carrier:0
collisions:@ txqueuelen:1000
RX bytes:45429 (44.3 KiB) TX bytes:48763 (47.6 KiB)

eth0:0 Link encap:Ethernet HWaddr 08:00:27:f5:74:cf
inet addr:10.104.33.39 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:@ overruns:0@ frame:0
TX packets:@ errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

root@linux:~#

4.6. Debian package management

To get all information about the newest packages form the online repository

root@linux:~# aptitude update

Get: 1 http://ftp.be.debian.org jessie InRelease [191 kB]

Get: 2 http://security.debian.org jessie/updates InRelease [84.1 kB]

Get: 3 http://ftp.be.debian.org jessie-updates InRelease [117 kB]

Get: 4 http://ftp.be.debian.org jessie-backports InRelease [118 kB]

Get: 5 http://security.debian.org jessie/updates/main Sources [14 B]

Get: 6 http://ftp.be.debian.org jessie/main Sources/DiffIndex [7,876 B]
(output truncated)

To download and apply all updates for all installed packages:

root@linux:~# aptitude upgrade
Resolving dependencies ...
The following NEW packages will be installed:
firmware-linux-free{a} irgbalance{a} 1libnumal{a} Tlinux-image-3.16.0-4-
amdé6s4{a}
The following packages will be upgraded:
busybox file libc-bin 1ibc6 libexpatl libmagicl libpaper-utils libpaperl libsqlite3-
0
linux-image-amd64 locales multiarch-support
12 packages upgraded, 4 newly installed, @ to remove and @ not upgraded.
Need to get 44.9 MB of archives. After unpacking 161 MB will be used.
Do you want to continue? [Y/n/?]
(output truncated)

To install new software (vim and tmux in this example):

39

4. installing Debian 8

root@linux:~# aptitude install vim tmux
The following NEW packages will be installed:
tmux vim vim-runtime{a}
0 packages upgraded, 3 newly installed, @ to remove and 0 not upgraded.
Need to get 6,243 kB of archives. After unpacking 29.0 MB will be used.
Do you want to continue? [Y/n/?]
Get: 1 http://ftp.be.debian.org/debian/ jessie/main tmux amd64 1.9-6 [245 kB]
Get: 2 http://ftp.be.debian.org/debian/ jessie/main vim-runtime all 2:7.4.488-
1 [5,046 kB]
Get: 3 http://ftp.be.debian.org/debian/ jessie/main vim amd64 2:7.4.488-
1 [952 kB]

Refer to the package management chapter in LinuxAdm.pdf for more information.

40

5. installing CentOS 8

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

This module is a step by step demonstration of an actual installation of Cent0S 8.

We start by downloading an image from the internet and install Cent0S 8 as a virtual ma-
chine in Virtualbox. We will also do some basic configuration of this new machine like
setting an ip address and fixing a hostname.

This procedure should be very similar for other versions of Cent0S, and also for distributions

like RHEL (Red Hat Enterprise Linux) or Fedora. This procedure can also be helpful if you are
using another virtualization solution.

5.1. download a CentOS 7 image

This demonstration uses a laptop computer with Virtualbox to install Cent0S 7 as a virtual
machine. The first task is to download an .iso image of Cent0S 7.

The Cent0S 7 website looks like this today (November 2014). They change the look regularly,
so it may look different when you visit it.

-%{entos download @ About ~ & Community ~

The CentOS Project

jelivering a robust

em arou atfo
ffe U
CentOSs ux CentOS Stream

News and events Sponsorship
CentOS would not be possible without the
September 23-25: DevConf.US and Dojo support of our sponsors. We would like to
e o thank the following product/service for
The call for presentations for both DevConf.US and the CentOS Dojo are now open. being a CentOs sponsor
Both will be held online

You can download a full DVD, which allows for an off line installation of a graphical Cent0S
7 desktop. You can select this because it should be easy and complete, and should get you
started with a working Cent0S 7 virtual machine.

But | clicked instead on 'alternative downloads', selected Cent0S 7 and x86_64 and ended

up on amirror list. Each mirror is a server that contains copies of Cent0S 7 media. |
selected a Belgian mirror because | currently am in Belgium.

41

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

5. installing CentOS 8

c)se@ 04

Index of /centos/8.2.2004/isos/x86_64/

Name Last Modified size: Type
/ - Directory

Cent0S-8.2.2004-x86_64-boot.iso 2020-un-09 00:26:48 624.6M application/x-is09660-inage
Cent0s 04-x86_64-boot . is0.manifest 2020-un-09 00:39:02 0.6K application/x-ms-manifest
Cent0s 04-x86_64-boot . torrent 2020-Jun-15 17:35:30 24.9K application/x-bittorrent
Cent0S-8.2.2004-x86_64-dvd1.iso 2020-Jun-09 61:11:38 7.6G application/x-is09660- inage
Cent05-8.2.2004-x86_64-dvdl.iso.nanifest 2620-Jun-09 61:11:38 425.6K application/x-ms-manifest
Cent0S-8.2.2004-x86_64-dvdl. torrent 2020-Jun-15 17:35:48 307.1K application/x-bittorrent
Cent0S-8.2.2004-x86_64-minimal.iso 2020-un-09 01:09:44 1.66 application/x-is09660-inage
Cent0S-8.2.2004-x86_64-minimal.iso.nanifest 2020-Jun-09 01:09:44 91.4K application/x-ms-manifest

2.2004-x86_64-minimal. torrent 2020-Jun-15 17:35:51 64.5K application/x-bittorrent
CHECKSUM 2020-Jun-13 61:42:13 0.4K application/octet-strean
CHECKSUM. asc 2020-un-19 20:10:24 0.8K text/plain; charset=utf-8

y NonStop

There is again the option for full DVD's and more. This demonstration will use the minimal
.iso file, because it is much smaller in size. The download takes a couple of minutes.

o1 s
2010 3081058 T

Verify the size of the file after download to make sure it is complete. Probably a right click
on the file and selecting 'properties’ (if you use Windows or Mac OSX).

| use Linux on the laptop already:

student@linux:~$ 1s -1lh Cent0S-7.0-1406-x86_64-Minimal.iso
-rw-r--r-- 1 paul paul 566M Nov 1 14:45 Cent0S-7.0-1406-x86_64-Minimal.iso

Do not worry if you do no understand the above command. Just try to make sure that the
size of this file is the same as the size that is mentioned on the Cent0S 7 website.

5.2. Virtualbox

This screenshot shows up when | start Virtualbox. | already have four virtual machines, you
might have none.

Below are the steps for creating a new virtual machine. Start by clicking New and give your
machine a name (I chose server33). Click Next.

42

5.2. Virtualbox

Create Virtual Machine [}

Name and operating system

Please choose a descriptive name and destination folder for the new
virtual machine and select the type of operating system you intend
to install on it. The name you choose will be used throughout
VirtualBox to identify this machine,

Name: |5EF".I'EF45| |

% Machine Folder: |5 fhomejaschapelle/VirtualBox VMs v
. [64]
Type: | Linux -
- Typ <&

Version: | Red Hat (64-bit) >

Expert Mode Next = | Cancel

A Linux computer without graphical interface will run fine on half a gigabyte of RAM.

A Linux virtual machine will need a virtual hard drive.

cccccc

Any format will do for our purpose, so | left the default vdi.

43

5. installing CentOS 8

Create Virtual Hard Disk []

Hard disk file type

Please choose the type of file that you would like to use for the new
virtual hard disk. If you do not need to use it with other
virtualization software you can leave this setting unchanged.

® VDI (VirtualBox Disk Image)

WHD (Virtual Hard Disk)

VMDE (Virtual Machine Disk)

Expert Mode MNext = | Cancel

The default dynamically allocated type will save disk space (until we fill the virtual disk up
to 100 percent). It makes the virtual machine a bit slower than fixed size, but the fixed
size speed improvement is not worth it for our purpose.

NNNNN

The name of the virtual disk file on the host computer will be server33.vdiin my case (I left
it default and it uses the vm name). Also 16 GB should be enough to practice Linux. The file
will stay much smaller than 16GB, unless you copy a lot of files to the virtual machine.

<Back

You should now be back to the start screen of Virtualbox. If all went well, then you should
see the machine you just created in the list.

YA

5.3. CentOS 7 installing

After finishing the setup, we gointo the Settings of our virtual machine and attach the .iso
file we downloaded before. Below is the default screenshot.

serverd5 - Settings

E General Storage
@ Systemn Storage Devices Attributes
B Display ~ [i Name: |IDE
£l Storage ﬁ?on?rzll:;:: SATA . :
v | Use Host IjO Cache
'i‘D] Audio] serveras.vdi
@ MNetwaork
@ Serial Ports
ﬁ) USE
|j Shared Folders
EI User Interface
L

M cancel Qok

This is a screenshot with the .iso file properly attached.

5.3. CentOS 7 installing

The screenshots below will show every step from starting the virtual machine for the first
time (with the .iso file attached) until the first logon.

You should see this when booting, otherwise verify the attachment of the .iso file form the
previous steps. Select Test this media and install CentOS 7.

45

5. installing CentOS 8

E server33 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

Install CentOS 7

Cent03 7

Test this media & install CentDS ?

Troubleshoot ing

futomatic boot in 59 seconds...

B & | (0[] Left Winkey

Carefully select the language in which you want your CentO0S. | always install operating sys-
tems in English, even though my native language is not English.

Also select the right keyboard, mine is a US gwerty, but yours may be different.

Machine WView Devices Help

server33 [Running] - Oracle VM VirtualBox + - 0X

Type here to search.

CENTOS 7 INSTALLATION
Eus

WELCOME TO CENTOS 7.

‘What language would you Like to use during the installation process?

English (United Kingdom)

Afrikaans (
English (India)
ATICH
English {Australia)
asll English {Canada)
i English (Denmark)
Asturianu English (Ireland)
Benapyckas English (New Zealand)
Brarapckm English (Nigeria)
e English {Hong Kong SAR China)
English (Philippines)
Bosanski
English (Singapore)
Catald English {South Africa)
CeStina Czech English (Zambia)
Cymraeg Welsh English (Zimbabwe)
(

Dansk Danish English (Botswana)

Quit Continue

B @& D& D P Left Winkey

You should arrive at a summary page (with one or more warnings).

46

server33 [Running] - Oracle VM VirtualBox
Machine WView Devices Help

53

+ . 0X

INSTALLATION SUMMARY

%

CentOS LOCALIZATION

DATE & TIME
Americas/New York timezone

LANGUAGE SUPPORT
English (United States)

SOFTWARE

INSTALLATION SOURCE
Local media

SYSTEM

INSTALLATION DESTINATION
A Automatic partitioning selected

i Please complete items marked with this icon before continuing to the next step.

CENTOS 7 INSTALLATION
B us

KEYBOARD

English (US)

SOFTWARE SELECTION
Minimal Install

NETWORK & HOSTNAME
Not connected

Quit

B @ & i ([] (3 2] Left Winkey

CentQOS 7 installing

Start by configuring the network. During this demonstration | had a DHCP server running
at 192.168.1.42, yours is probably different. Ask someone (a network administator ?) for help

if this step fails.

=

server33 [Running] - Oracle VM VirtualBox

Machine WView Devices Help

NETWORK & HOSTNAME

one

/Iﬂ Ethernet (enpOs3) |—
<~ Intel Corporation PRO/1000 MT Desktop Adspter %

Hostname: | localhost.localdomain

| Ethernet (enpOs3) _D

&= Connected
Hardware Address OB:00:27:1C:F5:AB
Speed 1000 Mb/s
IP Address 10.0.2.15
Subnet Mask 255.255.255.0
Default Route 10.0.2.2

DNS 192.168.1.42

CENTOS 7 INSTALLATION

Configure

B @ 6P & @ | @ () Left Winkey

Select your time zone, and activate ntp.

47

5. installing CentOS 8

= server33 [Running] - Oracle VM VirtualBox
Machine WView Devices Help

DATE & TIME CENTOS 7 INSTALLATION

| 1 [[|
Region: | Europe v | City: | Brussels Network Time Fa

November v [1 w | 2014 v

B @& [0 | @ [Left Winkey

Choose a mirror that is close to you. If you can't find a local mirror, then you can copy the
one from this screenshot (it is a general Cent0S mirror).

E server33 [Running] - Oracle VM VirtualBox
Machine View Devices Help

INSTALLATION SOURCE

Dene

Which installation source would you like to use?

" Auto-detected installation media:

De

Label: CentOS_

@ On the network:

T] T]
httpi// || mirror.centos.org/centos/7/os/xB6_64/ Proxy setup...

"1 This URL refers to a mirror list. k_

Additional repositories

Enabled Name Name:
r 10
http:ff
() This URL refers to a mirror list.
r
Proxy URL:
1
Username:
= 1
- G Password:

B @R [@ & Left winkey

It can take a couple of seconds before the mirror is verified.

48

5.3. CentOS 7 installing

server33 [Running] - Oracle VM VirtualBox + - 0OX
Machine WView Devices Help

INSTALLATION SUMMARY CENTOS 7 INSTALLATION

% B

(=010 =) O CALIZATION

DATE & TIME KEYBOARD
Europe/Brussels timezone English (US)

LANGUAGE SUPPORT
English (United States)

SOFTWARE
INSTALLATION SOURCE SOFTWARE SELECTION
http://mirror.centos.org/centos/7/0s/x86_64/ A Source changed - please verify

k

SYSTEM

INSTALLATION DESTINATION NETWORK & HOSTNAME
A Automatic partitioning selected Wired (enpOs3) connected
Quit

i Please complete items marked with this icon before continuing to the next step.

B @ & i ([] (3 2] Left Winkey

| did not select any software here (because | want to show it all in this training).

[server33 [Running] - Oracle VM VirtualBox
Machine WView Devices Help

SOFTWARE SELECTION

Dene

Base Environment Add-Ons for Selected Environment

© nstall Compatibility Libraries

Basic functionality

Compatibility libraries for applications built on previous versions of
Infrastructure Server CentOS Linux.
Server for operating network infrastructure services
Development Tools
File and Print Server A basic development environment.
File, print, and storage server for enterprises. Smart Card Support
Support for using smart card authentication,
Basic Web Server
Server for serving static and dynamic internet content.

Virtualization Hest

Minimal virtualization host,

Server with GUI

Server for operating network infrastructure services, with a GUI.

GNOME Desktop
GNOME is a highly intuitive and user friendly desktop environment

KDE Plasma Workspaces k
The KDE Plasma Workspaces, a highly-configurable graphical user

interface which includes a panel. desktop. system icons and desktop

widgets. and many powerful KDE applications

Development and Creative Workstation
Woarkstation for software, hardware, graphics, or content

development

B @ & i [(2 2 Left winkey

After configuring network, location, software and all, you should be back on this page. Make
sure there are no warnings anymore (and that you made the correct choice everywhere).

49

5. installing CentOS 8

server33 [Running] - Oracle VM VirtualBox + - 0OX
Machine WView Devices Help
INSTALLATION SUMMARY CENTOS 7 INSTALLATION
Bus
S LUC S| OCALIZATION
DATE & TIME KEYBOARD
Europe/Brussels timezone English (US)

LANGUAGE SUPPORT
English (United States)

SOFTWARE
INSTALLATION SOURCE SOFTWARE SELECTION
http://mirror.centos.org/centos/7/0s/x86_64/ Minimal Install
L3
SYSTEM
INSTALLATION DESTINATION NETWORK & HOSTNAME
Automatic partitioning selected Wired (enpOs3) connected
Quit Begin Installation

B @ & i [(2 2 Left winkey

You can enter a root password and create a user account while the installation is down-
loading from the internet. This is the longest step, it can take several minutes (or up to an
hour if you have a slow internet connection).

server33 [Running] - Oracle VM VirtualBox

CONFIGURATION CENTOS 7 INSTALLATION
Eus

USER SETTINGS

ROOT PASSWORD @ usercreaTION
Root password is set - User paul will be created

- Starting package installation process

CentQS Core SIG
Produces the CentOS Linux Distribution.

wiki.centos.org/Special InterestGroup

B @& 0 & @ [@ [E)Left Winkey

If you see this, then the installation was successful.

Time to reboot the computer and start Cent0S 7 for the first time.

50

5.3. CentOS 7 installing

server33 [Running] - Oracle VM VirtualBox + - 0OX

Machine WView Devices Help
i

o

CONFIGURATION CENTOS 7 INSTALLATION

% B

CentOS

Complete!

—

CentOS is now successfully installed on your system and ready for you to use! Go ahead and reboot to start using it!

Reboot

£ Use of this product is subject to the license agreement found at fusr/share/centos-release/EULA

B & &P] wm [| (9 (8] Left Winkey

This screen will appear briefly when the virtual machines starts. You don't have to do any-
thing.

E server33 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

CentDS Linux, with Linux 3.10.0-123.e17.x86_64
Cent03 Linux, with Linux O-rescue-5a89376246d4640eabbfeel96a8d4376e9

Use the T and ! keys to change the selection.

Py

Press ‘e’ to edit the selected item, or 'c’ for a command prompt.
The selected entry will be started automatically in 5s.

]

B o2 | ([Left Winkey

After a couple of seconds, you should see a logon screen. Thisiscalled a tty ora getty. Here
you can type root as username. The login process will then ask your password (nothing
will appear on screen when you type your password).

51

5. installing CentOS 8

E server33 [Running] - Oracle VM VirtualBox

Machine Wiew Devices Help

Cent0S Linux ? (Core)
Kernel 3.18.8-123.el?.x86_64 on an xB6_64

localhost login: _

B) &P om0 | (9 [2] Left Winkey

And this is what it looks like after logon. You are logged on to your own Linux machine, very
good.

E server33 [Running] - Oracle VM VirtualBox 4+ - 0OX

Machine Wiew Devices Help

Cent0S Linux ? (Core)
Kernel 3.18.8-123.el?.x86_64 on an xB6_64

localhost login: root
Password:
[root@localhost ~1# _

B) &P om0 | (9 [2] Left Winkey

All subsequent screenshots will be text only, no images anymore.

For example this screenshot shows three commands being typed on my new CentOS 7 in-
stall.

[root@localhost ~H who am 1

root pts/0 2014-11-01 22:14
[root®localhost ~Ht hostname
localhost.localdomain

[root@localhost ~Ht date

Sat Nov 1 22:14:37 CET 2014

When using ssh the same commands will give this screenshot:

[root@localhost ~H who am i
root ptS/@ 2014-11-01 21:00 (192.168.1.35)
[root@localhost ~H hostname

52

5.4. CentOS 7 first logon

localhost.localdomain
[root®localhost ~Ht date

Sat Nov 1 22:10:04 CET 2014
[root@localhost ~Hhit

If the last part is a bit too fast, take a look at the next topic Cent0S 7 first logon.

5.4. CentOS 7 first logon

All you have to log on, after finishing the installation, is this screen in Virtualbox.

E server33 [Running] - Oracle VM VirtualBox 4+ - 0OX

Machine Wiew Devices Help

Cent0S Linux ? (Core)
Kernel 3.18.8-123.el?.x86_64 on an xB6_64

localhost login: _

B o2 | ([Left Winkey

This is workable to learn Linux, and you will be able to practice a lot. But there are more
ways to access your virtual machine, the next chapters discuss some of these and will also
introduce some basic system configuration.

5.4.1. setting the hostname

Setting the hostname is a simple as changing the /etc/hostname file. As you can see here,
itissetto localhost.localdomain by default.

[root@localhost ~Ht cat /etc/hostname
localhost.localdomain

You could do echo server33.netsec.local > /etc/hostname followed by a reboot. But
there is also the new Cent0S 7 way of setting a new hostname.

[root@localhost ~H nmtui

The above command will give you a menu to choose from with a set system hostname
option. Using this nmtui option will edit the /etc/hostname file for you.

53

5. installing CentOS 8

[root@localhost ~Ht cat /etc/hostname
server33.netsec.local

[root@localhost ~Ht hostname
server33.netsec.local

[root@localhost ~Ht dnsdomainname
netsec.local

For some reason the documentation on the centos.organd docs.redhat.comwebsites tell
you to also execute this command:

[root@localhost ~Ht systemctl restart systemd-hostnamed

5.5. Virtualbox network interface

By default Virtualbox will connect your virtual machine over a nat interface. This will show
up as a10.0.2.15 (or similar).

[rootaserver33 ~Ht ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_1ft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast s\
tate UP qlen 1000
link/ether 08:00:27:1c:f5:ab brd ff:ff:ff:ff:ff:ff
inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp@s3
valid_1ft 86399sec preferred_1ft 86399sec
inet6 fe80::a00:27ff:felc:f5ab/64 scope link
valid_1ft forever preferred_lft forever

You can change this to bridge (over your wi-fi or over the ethernet cable) and thus make it
appear as if your virtual machine is directly on your local network (receiving an ip address
from your real dhcp server).

o server33 - Settings + 0 X
g
[E General Network
[# system
Display Adapter 1 | Adapter 2 | Adapter 3 | .e'-.dapteril
Storage ¥ Enable Network Adapter
B Audio Attached to: [Bridged Adapter [+]
Metwork MName: HE_TI:_ attached LI
{3 Serial Ports 7 Advanced [MAT Network
& uss Adapter Type: Internal Network ktop (B2540EM) =
L] Shared Folders Host-only Adapter
Promiscuous Mode: Generic Driver x|
MAC Address: [0B0D271CFSAB (s}

[¥ Cable Connected

Port Forwarding |

0K I Cancel Help

54

5.6. configuring the network

You can make this change while the vm is running, provided that you execute this com-
mand:

[rootaserver33 ~Ht systemctl restart network
[root@server33 ~Ht ip a s dev enp@s3
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast s\
tate UP glen 1000
link/ether 08:00:27:1c:f5:ab brd ff:ff:ff:ff:ff:ff
inet 192.168.1.110/24 brd 192.168.1.255 scope global dynamic enp@s3
valid_1ft 7199sec preferred_1ft 7199sec
inet6 fe80::a00:27ff:felc:f5ab/64 scope link
valid_1ft forever preferred_lft forever
[root@server33 ~Ht

5.6. configuring the network

The new way of changing network configuration is through the nmtui tool. If you want to
manually play with the files in /etc/sysconfig/network-scripts then you will first need
to verify (and disable) NetworkManager on that interface.

Verify whether an interface is controlled by NetworkManager using the nmcli commmand (con-
nected means managed bu NM).

[root@server33 ~H nmcli dev status

DEVICE TYPE STATE CONNECTION
enp@s3 ethernet connected enp0@s3
lo loopback unmanaged --

Disable NetworkManager on an interface (enp0s3 in this case):

echo 'NM_CONTROLLED=no' >> /etc/sysconfig/network-scripts/ifcfg-enp0s3
You can restart the network without a reboot like this:

[rootaserver33 ~Ht systemctl restart network

Also, forget ifconfig and instead use ip a.

[rootaserver33 ~Ht ip a s dev enp0s3 | grep inet
inet 192.168.1.110/24 brd 192.168.1.255 scope global dynamic enp@s3
inet6 fe80::a00:27ff:felc:f5ab/64 scope link

[rootaserver33 ~Ht

5.7. adding one static ip address
This example shows how to add one static ip address to your computer.
[root@server33 ~H nmtui edit enp@s3

In this interface leave the IPv4 configuration to automatic, and add an ip address just be-
low.

55

5. installing CentOS 8

IPv4 CONFIGURATION <Automatic> <Hide>
Addresses 10.104.33.32/16 <Remove>

Execute this command after exiting nmtui.
[rootaserver33 ~Ht systemctl restart network
And verify with ip (not with ifconfig):

[rootaserver33 ~Ht ip a s dev enp0s3 | grep inet
inet 192.168.1.110/24 brd 192.168.1.255 scope global dynamic enp@s3
inet 10.104.33.32/16 brd 10.104.255.255 scope global enp®s3
inet6 fe80::a00:27ff:felc:f5ab/64 scope link

[root@server33 ~Ht

5.8. package management

Even with a network install, Cent0S 7 did not install the latest version of some packages.
Luckily there is only one command to run (as root). This can take a while.

[rootaserver33 ~H yum update
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: centos.weepeetelecom.be
* extras: centos.weepeetelecom.be
* updates: centos.weepeetelecom.be
Resolving Dependencies
--> Running transaction check
---> Package NetworkManager.x86_64 1:0.9.9.1-13.git20140326.4dba720.e17 \
will be updated
(output truncated)

You can also use yum to install one or more packages. Do not forget to run yum update from
time to time.

[rootdserver33 ~H yum update -y & yum install vim -y
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: centos.weepeetelecom.be
(output truncated)

Refer to the package management chapter for more information on installing and removing
packages.

5.9. logon from Linux and MacOSX

You can now open a terminal on Linux or MacOSX and use ssh to log on to your virtual ma-
chine.

student@linux:~$ ssh root@192.168.1.110
root®192.168.1.110"'s password:

Last login: Sun Nov 2 11:53:57 2014
[root@server33 ~Ht hostname
server33.netsec.local

[rootgserver33 ~Ht

56

5.70. logon from MS Windows

5.10. logon from MS Windows

There is no ssh installed on MS Windows, but you can download putty.exe from

http://ww .chiark.greenend.org.uk/~sgtatham/putty/download.html (just Google
it).

Use putty.exe as shown in this screenshot (I saved the ip address by giving it a name
'server33’ and presing the 'save’ button).

X PuTTY Configuration

Category:

= Seszion B azic options for your PUT T zezsion
L_l:ugglng Specify the destination you want to connect ko

=) Terminal

Hozt Hame [or P address) Part

F.eyboard
Bel 192.168.1.110 |22 |
Features Connechion type:

= windam (O Raw (O Telnet () Rlogin &2 55H (O Serial
A

PREATANCE Load, save or delete a stored sezsion
Behaviour
Tranzlation Saved Seszions
Selection |SEWET33 |
Colours .
Default Settings

= Connection zerverdd [i]
Drata i
Prowy
Rlagin

S5H
Serial Cloze window on exit;
(D away: O Mever (3 Only on clean axit
o) s

The first time you will get a message about keys, accept this (this is explained in the ssh
chapter).

57

5. installing CentOS 8

5 -)]

PuTTY Security Alert

The server's host key is nok cached in the registry, Vou
have no gquarantee that the server is the computer vou
think it is,

The server's rsaZ key fingerprint is:

ssh-rsa 2048 07:5b:6c:62:3F:49:5F:8b:0F: 3b:54:b6:8b: 561583
IF wou krust this host, hit Yes to add the key ko

PuTT's cache and carry on connecting.

IF wou wank ko carry on connecting just once, withaut
adding the key ko the cache, hit Mo,

IF wou dao not krust this hast, hit Cancel ko abandan the
conneckion,

] [Cancel

Enter your userid (or root) and the correct password (nothing will appear on the screen when
typing a password).

root@server33: -

58

6. getting Linux at home

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/)

This chapter shows a Ubuntu install in Virtualbox. Consider it legacy and use
Cent0S7 or Debian8 instead (each have their own chapter now).

This book assumes you have access to a working Linux computer. Most companies have one
or more Linux servers, if you have already logged on to it, then you 're all set (skip this chapter
and go to the next).

Another option is to insert a Ubuntu Linux CD in a computer with (or without) Microsoft
Windows and follow the installation. Ubuntu will resize (or create) partitions and setup a
menu at boot time to choose Windows or Linux.

If you do not have access to a Linux computer at the moment, and if you are unable or unsure
aboutinstalling Linux on your computer, then this chapter proposes a third option: installing
Linux in a virtual machine.

Installation in a virtual machine (provided by Virtualbox) is easy and safe. Even when you
make mistakes and crash everything on the virtual Linux machine, then nothing on the real
computer is touched.

This chapter gives easy steps and screenshots to get a working Ubuntu server in a Virtualbox
virtual machine. The steps are very similar to installing Fedora or CentOS or even Debian,
and if you like you can also use VMWare instead of Virtualbox.

6.1. download a Linux CD image

Start by downloading a Linux CD image (an .ISO file) from the distribution of your choice
from the Internet. Take care selecting the correct cpu architecture of your computer; choose
1386 if unsure. Choosing the wrong cpu type (like x86_64 when you have an old Pentium)
will almost immediately fail to boot the CD.

Home Ubuntu Business Cloud TV Download Support Project Community Partners Shop Ubuntug

Ubuntu Ubuntu Server Type to search)

Download Ubuntu Server) (I

You can download Ubuntu Server now - it's completely free.

Download BuyCDs Ubuntu Server for ARM

Download Ubuntu Server

Click the big orange button to Download options
download the latest version of

Ubuntu. You will need to create a
CD or USB stick to install Ubuntu.

| Ubuntu 11.10 - Latest version

Start download

ar| [

| 64-bit - {recommended) Ubuntu Server 11.10

Our long-term support (LTS) 64-hit
releases are supported for five
years on the server. Perfect for
organisations that need more
stability For larger deployments.

Direct url for this download

59

https://github.com/paulcobbaut/

6. getting Linux at home

6.2. download Virtualbox

Step two (when the .ISO file has finished downloading) is to download Virtualbox. If you are
currently running Microsoft Windows, then download and install Virtualbox for Windows!

<>

Irtuaibox

Download VirtualBox

About Here, you will find links to VirtualBox binaries and its source code.
ou

Screenshots VirtualBox binaries
D load
ownloads By downloading, you agree to the terms and conditions of the respectiv

Documentation
* VirtualBox platform packages. The binaries are released under

End-user docs o VirtualBox 4.1.8 for Windows hosts = x86/amd64
Technical docs o VirtualBox 4.1.8 for OS X hosts > x86/amd64
o VirtualBox 4.1.8 for Linux hosts
Contribute o VirtualBox 4.1.8 for Solaris hosts = x86/amd64

6.3. create a virtual machine

Now start Virtualbox. Contrary to the screenshot below, your left pane should be empty.

el e e

Oracle VM VirtualBox Manager =

Ly E_é) ~ b
{:3 Tapd - =ik | @ Snapshots |

MNew Settings Start Discard

(m-:- - R
. r: -
T ap—

s A ——
B gRRm—— -
‘d

Y —

fﬂ--d - o
gm_-‘- E(m' ----- b _.‘.’

P

(3

Click New to create a new virtual machine. We will walk together through the wizard. The
screenshots below are taken on Mac OSX; they will be slightly different if you are running
Microsoft Windows.

60

6.3. create a virtual machine

Create New Virtual Machine

Welcome to the New Virtual Machine Wizard!

This wizard will guide you through the steps that are necessary to create a new
virtual machine for VirtualBox.

Use the Continue button to go to the next page of the wizard and the Go Back
button to return to the previous page. You can also press Esc if you want to
cancel the execution of this wizard.

Continue |
Y

Co Back ()

Name your virtual machine (and maybe select 32-bit or 64-bit).

Create New Virtual Machine

VM Name and OS Type

Enter a name for the new virtual machine and select the type of the guest
operating system you plan to install onto the virtual machine.

The name of the virtual machine usually indicates its software and hardware
configuration. It will be used by all VirtualBox components to identify your
virtual machine.

Name

mijnvirtuelemachine

05 Type

Operating System: | Linux

Version: [Ubuntu (64 bit)

(" GoBack) (Continue)
A

Give the virtual machine some memory (512MB if you have 2GB or more, otherwise select
256MB).

61

6. getting Linux at home

O00 Create New Virtual Machine

Memory

Select the amount of base memory (RAM) in megabytes to be allocated to the
virtual machine.

The recommended base memory size is 512 MB.
Base Memory Size

T 512 MB

4 MB 8192 MB

(Co Back) (Continue)
Y

Select to create a new disk (remember, this will be a virtual disk).

o000 Create New Virtual Machine

Virtual Hard Disk

If you wish you can now add a start-up disk to the new machine. You can either
create a new virtual disk or select one from the list or from another location

using the folder icon.

If you need a more complex virtual disk setup you can skip this step and make
the changes to the machine settings once the machine is created.

The recommended size of the start-up disk is 8,00 GB.
[/ Start-up Disk
(*) Create new hard disk
() Use existing hard disk

_{} CeElOSG.vdi (Normal, 16,00 GB)

&l

(Go Back) (_ Continue)
A

If you get the question below, choose vdi.

62

6.3. create a virtual machine

Create New Virtual Disk

Welcome to the virtual disk creation wizard

This wizard will help you to create a new virtual disk for your
virtual machine.

Use the Continue button to go to the next page of the wizard and
the Go Back button to return to the previous page. You can also
press Esc if you want to cancel the execution of this wizard.

Please choose the type of file that you would like to use for the
new virtual disk. If you do not need to use it with other
virtualization software you can leave this setting unchanged.

File type

(=) VDI (VirtualBox Disk Image)
() VMDK (Virtual Machine Disk)
() VHD (Virtual Hard Disk)

() HDD (Parallels Hard Disk)

Go Back Continue |

4

Choose dynamically allocated (fixed size is only useful in production or on really old, slow
hardware).

Create New Virtual Disk

Virtual disk storage details

Please choose whether the new virtual disk file should be allocated
as it is used or if it should be created fully allocated.

A dynamically allocated virtual disk file will only use space on
your physical hard disk as it fills up, although it will not shrink
again automatically when space on it is freed.

A fixed size virtual disk file may take longer to create on some
systems but is often faster to use.

Storage defails

(=) Dynamically allocated
O Fixed si
() Fixed size

(GoBack) [Continue)

P

Choose between 10GB and 16GB as the disk size.

63

6. getting Linux at home

Create New Virtual Disk

Virtual disk file location and size

Please type the name of the new virtual disk file into the box
below or click on the folder icon to select a different folder to
create the file in.

Location

mijnvirtuelemachine)

Select the size of the virtual disk in megabytes. This size will be
reported to the Guest OS as the maximum size of this virtual disk.

Size

% ~ 10,00C8

C Go Back) (Continue)

P
Click create to create the virtual disk.
@, Create New Virtual Disk
Summary
You are going to create a new virtual disk with the following
parameters:
File type: VDI (VirtualBox Disk Image) q
Details: Dynamically allocated storage 4
Location: fUsers/paul/VirtualBox VMs/mijnvirtuelemachine/mi .
invirtuelemachine.vdi v
If the above settings are correct, press the Create button. Once
you press it the new virtual disk file will be created.
(Go Back) (Create)
P

Click create to create the virtual machine.

64

Create New Virtual Machine

6.4. attach the CD image

Summary

MName:
0S Type:

window.

You are going to create a new virtual machine with the following parameters:

mijnvirtuelemachine
Ubuntu (64 bit)
Base Memory: 512 MB

Start-up Disk: mijnvirtuelemachine.vdi (Normal, 10,00 GB)

If the above is correct press the Create button. Once you press it, a new virtual
machine will be created.

Note that you can alter these and all other setting of the created virtual machine
at any time using the Settings dialog accessible through the menu of the main

6.4. attach the CD image

Before we start the virtual computer, let us take a look at some settings (click Settings).

800

0 & D W

Mew Settings Start Discard

Oracle VM VirtualBox Manager

(Co Back) (Create)

A4

=

L= SEH B G Snapshots

mijnvi rtuelem achine
@© Powered

Ira
M T
v g

r T
;=0
-
r ="

o T -
1 e

» - e
T - W

— g =

F—--—-—b— 1
| —

[E General

Name: mijnvirtuelemachine
0OS Type: Ubuntu (64 bit)

System

Base Memory: 512 MB

Boot Order: Floppy,
CD/DVD-ROM,
Hard Disk

Acceleration: VT-x/AMD-V,

Display
Video Memory:

(& Storage
IDE Controller

12 MB
Remote Desktop Server: Disabled

E Preview

mijnvirtuelemachine

IDE Secondary Master (CD/DVD): Empty

SATA Controller
SATA Port O:

i Audio

mijnvirtuelemachine.vdi
(Normal, 10,00 GB)

[s
-

\d
Fs
v

Do not worry if your screen looks different, just find the button named storage.

65

6. getting Linux at home

mijnvirtuelemachine - General

bl.'-‘ Advanced Descrip-tinn]

Name: Imijnvirtuelemachine I
Operating System: [Linux H H(‘.'
7
Version: | Ubuntu (64 bit) B

® [Cancel :] H

Remember the .ISO file you downloaded? Connect this .ISO file to this virtual machine by
clicking on the CD icon next to Empty.

mijnvirtuelemachine - Storage

Storage Tree Attributes
|@ IDE Controller | CD/DVD Drive: | IDE Secondary | 3| ()
[| Live CD/DVD
@ SATA Controller Information
mijnvirtuelemachine.vdi
Type: -—-
Size: --
Location: --
Attached To: --
@ @ @
® (Cancel) (*)

Now click on the other CD icon and attach your ISO file to this virtual CD drive.

66

6.4. attach the CD image

mijnvirtuelemachine - Sm;age m
= P @ & @
coenl Ssmm EEIE Audio Network Ports Shared Folders reral B preview
mijnvirtuelemachine
Storage Tree Attributes e: Ubuntu (64 bit)
@ IDE Controller CD/DVD Drive: | IDE Secondary | 3 | N
S T
48 SATA Controller Information - — -
& mijnvirtuelemachine.vdi
Type: -—- N e - N
- - - -
Size: --
-
Location: -- - -

Attached To: --

esktop Server: Disabled

ge
= troller
@ e e« scondary Master (CD/DVD): Empty
iontroller
@ @D Foro
(Normal, 1C

Verify that your download is accepted. If Virtualbox complains at this point, then you proba-
bly did not finish the download of the CD (try downloading it again).

mijnvirtuelemachine - Storage

A E B8k @S @

General System Display | Storage | Audio Metwork Ports Shared Folders
Storage Tree Attributes
4> IDE Controller CD/DVD Drive: | IDE Secondary »

ubuntu-11.04-server-am...
48 SATA Controller

) mijnvirtuelemachine.vdi

[| Live CD/DVD
Information
Type: Image
Size: 673,61 MB
Location: fUsers/paul/ISO/ubu...
Attached To: --

@ @ @ @
® (Cancel) (OK)

It could be useful to set the network adapter to bridge instead of NAT. Bridged usually will
connect your virtual computer to the Internet.

67

6. getting Linux at home

mijnvirtuelemachine - Network

r—f-H-iu-H Adapter 2 = Adapter 3 = Adapter4

Enable Network Adapter
Attached to: [NAT -
Name: |]
[» Advanced
® [Cancel) (*)

6.5. install Linux

The virtual machine is now ready to start. When given a choice at boot, select install and
follow the instructions on the screen. When the installation is finished, you can log on to the
machine and start practising Linux!

68

Part lil.

First steps on the command line

69

7. man pages

(Written by Paul Cobbaut, https;/github.com/paulcobbaut/)

This chapter will explain the use of man pages (also called manual pages) on your Unix or
Linux computer.

You will learn the man commmand together with related commands like whereis, whatis and
mandb.

Most Unix files and commands have pretty good man pages to explain their use. Man pages
also come in handy when you are using multiple flavours of Unix or several Linux distribu-
tions since options and parameters sometimes vary.

7.1. man $command

Type man followed by a command (for which you want help) and start reading. Press q to quit
the manpage. Some man pages contain examples (near the end).

student@linux:~$ man whois
Reformatting whois(1), please wait...

7.2. man $configfile
Most configuration files have their own manual.

student@linux:~$ man syslog.conf
Reformatting syslog.conf(5), please wait ...

7.3. man $daemon
This is also true for most daemons (background programs) on your system..

student@linux:~$ man syslogd
Reformatting syslogd(8), please wait ...

71

https://github.com/paulcobbaut/

7. man pages

7.4. man -k (apropos)
man -k (or apropos) shows a list of man pages containing a string.

student@linux:~$ man -k syslog

Im-syslog-setup (8) - configure laptop mode to switch syslog.conf
logger (1) a shell command interface to the syslog(3)
syslog-facility (8) Setup and remove LOCALx facility for sysklogd
syslog.conf (5) syslogd(8) configuration file

syslogd (8) - Linux system logging utilities.
syslogd-listfiles (8) - list system logfiles

7.5. whatis

To see just the description of a manual page, use whatis followed by a string.

student@linux:~$ whatis route
route (8) - show / manipulate the IP routing table

7.6. whereis

The location of a manpage can be revealed with whereis.

student@linux:~$ whereis -m whois
whois: /usr/share/man/manl/whois.1.gz

This file is directly readable by man.

student@linux:~$ man /usr/share/man/manl/whois.1.gz

7.7. man sections

By now you will have noticed the numbers between the round brackets. man man will explain
to you that these are section numbers. Executable programs and shell commands reside in
section one.

Executable programs or shell commands

System calls (functions provided by the kernel)

Library calls (functions within program libraries)

Special files (usually found in /dev)

File formats and conventions eg /etc/passwd

Games

Miscellaneous (including macro packages and conventions), e.g. man(7)
System administration commands (usually only for root)

Kernel routines [Non standard]

O ONOOUTLH WN

72

7.8. man $section $file
7.8. man $section $file

Therefor, when referring to the man page of the passwd command, you will see it written
as passwd(1); when referring to the passwd file, you will see it written as passwd(5). The
screenshot explains how to open the man page in the correct section.

[student@linux ~]$ man passwd # opens the first manual found
[student@linux ~]$ man 5 passwd # opens a page from section 5

7.9. man man

If you want to know more about man, then Read The Fantastic Manual (RTFM).

Unfortunately, manual pages do not have the answer to everything...

student@linux:~$ man woman
No manual entry for woman

7.10. mandb

Should you be convinced that a man page exists, but you can't access it, then try running
mandb on Debian/Mint.

root@linux:~# mandb

® man subdirectories contained newer manual pages.
@ manual pages were added.

0 stray cats were added.

0 old database entries were purged.

Or run makewhatis on CentOS/Redhat.

[root@linux ~Ht apropos scsi
scsi: nothing appropriate
[root@linux ~Ht makewhatis
[root@linux ~Ht apropos scsi

hpsa (4) - HP Smart Array SCSI driver

lsscsi (8) - list SCSI devices (or hosts) and their attributes
sd (4) - Driver for SCSI Disk Drives

st (4) - SCSI tape device

73

8. working with directories

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

This module is a brief overview of the most commmon commands to work with directories: pwd,
cd, 1s, mkdir and rmdir. These commands are available on any Linux (or Unix) system.

This module also discusses absoluteand relative pathsandpath completioninthe bash
shell.

8.1. pwd

The you are here sign can be displayed with the pwd command (Print Working Directory).
Go ahead, try it: Open a command line interface (also called a terminal, console or xterm)
and type pwd. The tool displays your current directory.

student@linux:~$ pwd

/home/paul

8.2. cd

You can change your current directory with the cd command (Change Directory).

student@linux$
student@linux$
/etc
student@linux$
student@linux$
/bin
student@linux$
student@linux$
/home/paul

8.2.1. cd ~

cd /etc
pwd

cd /bin
pwd

cd /home/paul/
pwd

The cd isalso a shortcut to get back into your home directory. Just typing cd without a target
directory, will put you in your home directory. Typing cd ~ has the same effect.

student@linux$
student@linux$
/etc
student@linux$
student@linux$
/home/paul
student@linux$
student@linux$
/home/paul

cd /etc
pwd

cd
pwd

cd ~
pwd

75

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

8. working with directories

8.2.2. cd ..

To go to the parent directory (the one just above your current directory in the directory
tree), type cd

student@linux$ pwd
/usr/share/games
student@linux$ cd
student@linux$ pwd
/usr/share

To stay in the current directory, type cd . ;-) We will see useful use of the . character repre-
senting the current directory later.

8.2.3. cd -

Another useful shortcut with cd is to just type cd - to go to the previous directory.

student@linux$ pwd
/home/paul
student@linux$ cd /etc
student@linux$ pwd
/etc

student@linux$ cd -
/home/paul
student@linux$ cd -
/etc

8.3. absolute and relative paths

You should be aware of absolute and relative paths in the file tree. When you type a
path starting with a slash (/), then the root of the file tree is assumed. If you don't start
your path with a slash, then the current directory is the assumed starting point.

The screenshot below first shows the current directory /home/paul. From within this direc-
tory, you have to type cd /home instead of cd home to go to the /home directory.

student@linux$ pwd

/home/paul

student@linux$ cd home

bash: cd: home: No such file or directory
student@linux$ cd /home

student@linux$ pwd

/home

When inside /home, you have to type cd paul instead of cd /paul to enter the subdirectory
paul of the current directory /home.

student@linux$ pwd

/home

student@linux$ cd /paul

bash: cd: /paul: No such file or directory
student@linux$ cd paul

student@linux$ pwd

/home/paul

76

8.4. path completion

In case your current directory is the root directory /, then both cd /home and cd home
will get you in the /home directory.

student@linux$ pwd

/

student@linux$ cd home
student@linux$ pwd
/home

student@linux$ cd /
student@linux$ cd /home
student@linux$ pwd
/home

This was the last screenshot with pwd statements. From now on, the current directory will
often be displayed in the prompt. Later in this book we will explain how the shell variable
$PS1 can be configured to show this.

8.4. path completion

The tab key can help you in typing a path without errors. Typing cd /et followed by the
tab key will expand the command lineto cd /etc/. When typing cd /Et followed by the
tab key, nothing will happen because you typed the wrong path (upper case E).

You will need fewer key strokes when using the tab key, and you will be sure your typed
path is correct!

8.5. Is

You can list the contents of a directory with 1s.

student@linux:~$ 1s
allfiles.txt dmesg.txt services stuff summer.txt
student@linux:~$

8.5.1. Is -a

A frequently used option with Is is -a to show all files. Showing all files means including the
hidden files. When a file name on a Linux file system starts with a dot, it is considered a
hidden file and it doesn't show up in regular file listings

student@linux:~$ 1s
allfiles.txt dmesg.txt services stuff summer.txt
student@linux:~$ 1s -a
allfiles.txt .bash_profile dmesg.txt .lesshst stuff
.bash_history .bashrc services .ssh summer.txt
student@linux:~$

77

8. working with directories

8.5.2. Is -l

Many times you will be using options with 1s to display the contents of the directory in differ-
ent formats or to display different parts of the directory. Typing just 1s gives you a list of files
in the directory. Typing ls -1 (thatis a letter L, not the number 1) gives you a long listing.

student@linux:~$ 1s -1

total 17296
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
drwxr-xr-x 2
-rw-r--r-- 1

paul
paul
paul
paul
paul

paul
paul
paul
paul
paul

17584442 Sep
96650 Sep
19558 Sep

4096 Sep
0 Sep

8.5.3. Is -lh

17
17
17
17
17

00:
00:
00:
00:
00:

allfiles.txt
dmesg.txt
services
stuff
summer.txt

03
03
04
04
04

Another frequently used Is option is -h. It shows the numbers (file sizes) in a more human
readable format. Also shown below is some variation in the way you can give the options to
1s. We will explain the details of the output later in this book.

Note that we use the letter L as an option in this screenshot, not the number 1.

student@linux:~$ 1s -1

total 17M

-rw-r--r-- 1 paul paul

-rw-r--r-- 1 paul paul

-rw-r--r-- 1 paul paul

drwxr-xr-x 2 paul paul

-rw-r--r-- 1 paul paul

student@linux:~$ 1s -1h
total 17M

-rw-r--r-- 1 paul paul
-rw-r--r-- 1 paul paul
-rw-r--r-- 1 paul paul
drwxr-xr-x 2 paul paul
-rw-r--r-- 1 paul paul

student@linux:~$ 1s -hl
total 17M

-rw-r--r-- 1 paul paul
-rw-r--r-- 1 paul paul
-rw-r--r-- 1 paul paul
drwxr-xr-x 2 paul paul
-rw-r--r-- 1 paul paul

student@linux:~$ 1s -h
total 17M

-rw-r--r-- 1 paul paul
-rw-r--r-- 1 paul paul
-rw-r--r-- 1 paul paul
drwxr-xr-x 2 paul paul
-rw-r--r-- 1 paul paul

student@linux:~$

78

-h

17M
95K
20K
4.0K
0

17M
95K
20K
4.0K
0

17M
95K
20K
4.0K

17M
95K
20K
4.0K

Sep
Sep
Sep
Sep
Sep

Sep
Sep
Sep
Sep
Sep

Sep
Sep
Sep
Sep
Sep

Sep
Sep
Sep
Sep
Sep

17
17
17
17
17

17
17
17
17
17

17
17
17
17
17

17
17
17
17
17

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

03
03
04
04
04

03
03
04
04
04

03
03
04
04
04

03
03
04
04
04

allfiles.txt
dmesg.txt
services
stuff
summer.txt

allfiles.txt
dmesg.txt
services
stuff
summer.txt

allfiles.txt
dmesg. txt
services
stuff
summer.txt

allfiles.txt
dmesg.txt
services
stuff
summer.txt

8.6. mkdir

8.6. mkdir

Walking around the Unix file tree is fun, but it is even more fun to create your own directories
with mkdir. You have to give at least one parameter to mkdir, the name of the new directory
to be created. Think before you type a leading / .

student@linux:~$ mkdir mydir

student@linux:~$ cd mydir
student@linux:~/mydir$ 1s -al

total 8

drwxr-xr-x 2 paul paul 4096 Sep 17 00:07 .
drwxr-xr-x 48 paul paul 4096 Sep 17 00:07
student@linux:~/mydir$ mkdir stuff
student@linux:~/mydir$ mkdir otherstuff
student@linux:~/mydir$ 1s -1

total 8

drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 otherstuff
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 stuff
student@linux:~/mydir$

8.6.1. mkdir -p

The following command will fail, because the parent directory of threedirsdeep does not
exist.

student@linux:~$ mkdir mydir2/mysubdir2/threedirsdeep
mkdir: cannot create directory ‘mydir2/mysubdir2/threedirsdeep’: No such fi\
le or directory

When given the option -p, then mkdir will create parent directories as needed.

student@linux:~$ mkdir -p mydir2/mysubdir2/threedirsdeep
student@linux:~$ cd mydir2

student@linux:~/mydir2$ 1s -1

total 4

drwxr-xr-x 3 paul paul 4096 Sep 17 00:11 mysubdir2
student@linux:~/mydir2$ cd mysubdir2
student@linux:~/mydir2/mysubdir2$ 1s -1

total 4

drwxr-xr-x 2 paul paul 4096 Sep 17 00:11 threedirsdeep
student@linux:~/mydir2/mysubdir2$ cd threedirsdeep/
student@linux:~/mydir2/mysubdir2/threedirsdeep$ pwd
/home/paul/mydir2/mysubdir2/threedirsdeep

8.7. rmdir

When a directory is empty, you can use rmdir to remove the directory.

student@linux:~/mydir$ 1s -1

total 8

drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 otherstuff
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 stuff
student@linux:~/mydir$ rmdir otherstuff

79

8. working with directories

student@linux:~/mydir$ cd

student@linux:~$ rmdir mydir

rmdir: failed to remove ‘mydir’: Directory not empty
student@linux:~$ rmdir mydir/stuff

student@linux:~$ rmdir mydir

student@linux:~$

8.7.1. rmdir -p

And similar to the mkdir -p option, you can also use rmdir to recursively remove directo-
ries.

student@linux:~$ mkdir -p test42/subdir
student@linux:~$ rmdir -p tests42/subdir
student@linux:~$

8.8. practice: working with directories

1. Display your current directory.
. Change to the /etc directory.
. Now change to your home directory using only three key presses.

. Change to the /boot/grub directory using only eleven key presses.

2
3
4
5. Go to the parent directory of the current directory.
6. Go to the root directory.

7. List the contents of the root directory.

8. List a long listing of the root directory.

9. Stay where you are, and list the contents of /etc.

10. Stay where you are, and list the contents of /bin and /sbin.

1. Stay where you are, and list the contents of ~.

12. List all the files (including hidden files) in your home directory.
13. List the files in /boot in a human readable format.

14. Create a directory testdir in your home directory.

15. Change to the /etc directory, stay here and create a directory newdir in your home direc-
tory.

16. Create in one command the directories ~/dirl/dir2/dir3 (dir3 is a subdirectory from dir2,
and dir2 is a subdirectory from dirl).

17. Remove the directory testdir.

18. If time permits (or if you are waiting for other students to finish this practice), use and
understand pushd and popd. Use the man page of bash to find information about these
commands.

80

8.9. solution: working with directories
8.9. solution: working with directories

1. Display your current directory.

pwd

2. Change to the /etc directory.

cd /etc

3. Now change to your home directory using only three key presses.
cd (and the enter key)

4. Change to the /boot/grub directory using only eleven key presses.
cd /boot/grub (use the tab key)

5. Go to the parent directory of the current directory.

cd .. (with space between cd and ..)

6. Go to the root directory.

cd /

7. List the contents of the root directory.

1s

8. List a long listing of the root directory.

1s -1

9. Stay where you are, and list the contents of /etc.

1s /etc

10. Stay where you are, and list the contents of /bin and /sbin.

1s /bin /sbin

11. Stay where you are, and list the contents of ~.

1s ~

12. List all the files (including hidden files) in your home directory.
ls -al ~

13. List the files in /boot in a human readable format.

81

8. working with directories

1s -1h /boot

14. Create a directory testdir in your home directory.
mkdir ~/testdir

15. Change to the /etc directory, stay here and create a directory newdir in your home direc-
tory.

cd /etc ; mkdir ~/newdir

16. Create in one command the directories ~/dirl/dir2/dir3 (dir3 is a subdirectory from dir2,
and dir2 is a subdirectory from dirl).

mkdir -p ~/dir1/dir2/dir3
17. Remove the directory testdir.
rmdir testdir

18. If time permits (or if you are waiting for other students to finish this practice), use and
understand pushd and popd. Use the man page of bash to find information about these
commands.

man bash # opens the manual
/pushd # searches for pushd
n # next (do this two/three times)

The Bash shell has two built-in commands called pushd and popd. Both commands work
with a common stack of previous directories. Pushd adds a directory to the stack and
changes to a new current directory, popd removes a directory from the stack and sets the
current directory.

student@linux:/etc$ cd /bin
student@linux:/bin$ pushd /1ib
/lib /bin

student@linux:/1ib$ pushd /proc
/proc /lib /bin
student@linux:/proc$ popd

/lib /bin

student@linux:/1ib$ popd

/bin

82

9. working with files

(Written by Paul Cobbaut, https:.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

In this chapter we learn how to recognise, create, remove, copy and move files using com-
mands like file, touch, rm, cp, mvand rename.

9.1. all files are case sensitive

Files on Linux (or any Unix) are case sensitive. This means that FILE1 is different from
filel,and /etc/hostsisdifferentfrom /etc/Hosts (the latter one does not exist on a typical
Linux computer)

This screenshot shows the difference between two files, one with upper case W, the other
with lower case w.

student@linux:~/Linux$ 1s

winter.txt Winter.txt
student@linux:~/Linux$ cat winter.txt
It is cold.

student@linux:~/Linux$ cat Winter.txt
It is very cold!

9.2. everythingis a file

A directory is a special kind of file, but it is still a (case sensitive!) file. Each termina
window (for example /dev/pts/4), any hard disk or partition (for example /dev/sdb1) and
any process are all represented somewhere in the file systemasa file. It will become
clear throughout this course that everything on Linux is a file.

9.3. file

The file utility determines the file type. Linux does not use extensions to determine the
file type. The command line does not care whether a file ends in .txt or .pdf. As a system
administrator, you should use the file command to determine the file type. Here are some
examples on a typical Linux system.

student@linux:~$ file pic33.png

pic33.png: PNG image data, 3840 x 1200, 8-bit/color RGBA, non-interlaced
student@linux:~$ file /etc/passwd

/etc/passwd: ASCII text

student@linux:~$ file HelloWorld.c

HelloWorld.c: ASCII C program text

83

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

9. working with files

The file command uses a magic file that contains patterns to recognise file types. The magic
file is located in /usr/share/file/magic. Type man 5 magic for more information.

It is interesting to point out file -s for special files like those in /dev and /proc.

rootlinux~# file /dev/sda

/dev/sda: block special

rootalinux~# file -s /dev/sda

/dev/sda: x86 boot sector; partition 1: ID=0x83, active, starthead...
root@linux~# file /proc/cpuinfo

/proc/cpuinfo: empty

rootlinux~# file -s /proc/cpuinfo

/proc/cpuinfo: ASCII C++ program text

9.4. touch

9.4.1. create an empty file

One easy way to create an empty file is with touch. (We will see many other ways for creating
files later in this book.)

This screenshot starts with an empty directory, creates two files with touch and the lists
those files.

student@linux:~$ 1s -1

total 0

student@linux:~$ touch file42
student@linux:~$ touch file33
student@linux:~$ 1s -1

total ©

-rw-r--r-- 1 paul paul @ Oct 15 08:57 file33
-rw-r--r-- 1 paul paul 0 Oct 15 08:56 file42
student@linux:~$

9.4.2. touch -t

The touch command can set some properties while creating empty files. Can you determine
what is set by looking at the next screenshot? If not, check the manual for touch.

student@linux:~$ touch -t 200505050000 SinkoDeMayo
student@linux:~$ touch -t 130207111630 BigBattle.txt
student@linux:~$ 1s -1

total 0

-rw-r--r-- 1 paul paul @ Jul 11 1302 BigBattle.txt
-rw-r--r-- 1 paul paul @ Oct 15 08:57 file33
-rw-r--r-- 1 paul paul 0 Oct 15 08:56 file42
-rw-r--r-- 1 paul paul @ May 5 2005 SinkoDeMayo
student@linux:~$

84

95 m

95. rm

9.5.1. remove forever

When you no longer need a file, use rm to remove it. Unlike some graphical user interfaces,
the command line in general does not have awaste binor trash canto recover files. When
you use rmto remove a file, the file is gone. Therefore, be careful when removing files!

student@linux:~$ 1s

BigBattle.txt file33 file42 SinkoDeMayo
student@linux:~$ rm BigBattle.txt
student@linux:~$ 1s

file33 file42 SinkoDeMayo
student@linux:~$

9.5.2. rm -i

To prevent yourself from accidentally removing a file, you can type rm -i.

student@linux:~$ 1s

file33 file42 SinkoDeMayo

student@linux:~$ rm -i file33

rm: remove regular empty file "file33'? yes
student@linux:~$ rm -i SinkoDeMayo

rm: remove regular empty file “SinkoDeMayo'? n
student@linux:~$ 1s

file42 SinkoDeMayo

student@linux:~$

9.5.3. rm -rf

By default, rm -r will not remove non-empty directories. However rm accepts several options
that will allow you to remove any directory. The rm -rf statement is famous because it will
erase anything (providing that you have the permissions to do so). When you are logged on
as root, be very careful with rm -rf (the f means force and the r means recursive) since
being root implies that permissions don't apply to you. You can literally erase your entire file
system by accident.

student@linux:~$ mkdir test

student@linux:~$ rm test

rm: cannot remove "test': Is a directory
student@linux:~$ rm -rf test

student@linux:~$ 1ls test

1s: cannot access test: No such file or directory
student@linux:~$

9.6. cp

9.6.1. copy one file

To copy a file, use cp with a source and a target argument.

85

9. working with files

student@linux:~$ 1s

file42 SinkoDeMayo

student@linux:~$ cp file42 file42.copy
student@linux:~$ 1s

file42 file42.copy SinkoDeMayo

9.6.2. copy to another directory

If the target is a directory, then the source files are copied to that target directory.

student@linux:~$ mkdir dirs4?2
student@linux:~$ cp SinkoDeMayo dir42
student@linux:~$ 1s dirs42/
SinkoDeMayo

9.6.3. cp -r

To copy complete directories, use cp -r (the -r option forces recursive copying of all files
in all subdirectories).

student@linux:~$ 1s

dir42 file42 file42.copy SinkoDeMayo
student@linux:~$ cp -r dir42/ dir33
student@linux:~$ 1s

dir33 dir42 file42 file42.copy SinkoDeMayo
student@linux:~$ 1ls dir33/

SinkoDeMayo

9.6.4. copy multiple files to directory

You can also use cp to copy multiple files into a directory. In this case, the last argument
(a.k.a. the target) must be a directory.

student@linux:~$ cp files42 file42.copy SinkoDeMayo dir42/
student@linux:~$ 1s dir42/
file42 file42.copy SinkoDeMayo

9.6.5. cp -i

To prevent cp from overwriting existing files, use the -1i (for interactive) option.

student@linux:~$ cp SinkoDeMayo file&?2
student@linux:~$ cp SinkoDeMayo file&2
student@linux:~$ cp -i SinkoDeMayo file42
cp: overwrite “file42'? n
student@linux:~$

86

9.7. mv

9.7.1. rename files with mv

Use mv to rename a file or to move the file to another directory.

student@linux:~$ 1s

dir33 dir42 file42

student@linux:~$ mv file42 file33
student@linux:~$ 1s

dir33 dir42 file33

student@linux:~$

When you need to rename only one file then mv is the preferred commmand to use.

9.7.2. rename directories with mv

file42.copy SinkoDeMayo

file42.copy SinkoDeMayo

The same mv command can be used to rename directories.

student@linux:~$ 1s -1

total 8

drwxr-xr-x 2 paul
drwxr-xr-x 2 paul
-rw-r--r-- 1 paul
-rw-r--r-- 1 paul
-rw-r--r-- 1 paul

student@linux:~$ mv dir33 backup

paul 4096 Oct
paul 4096 Oct
paul @ Oct
paul 0 Oct
paul 0 May

student@linux:~$ 1s -1

total 8

drwxr-xr-x 2 paul
drwxr-xr-x 2 paul
-rw-r--r-- 1 paul
-rw-r--r-- 1 paul
-rw-r--r-- 1 paul
student@linux:~$

9.7.3. mv -i

paul 4096 Oct
paul 4096 Oct
paul 0 Oct
paul @ Oct
paul 0 May

15 09:36
15 09:36
15 09:38
15 09:16
5 2005

15 09:36
15 09:36
15 09:38
15 09:16
5 2005

The mv also has a -1 switch similar to cp and rm.

this screenshot shows that mv -1 will ask permission to overwrite an existing file.

student@linux:~$ mv -i file33 SinkoDeMayo

mv: overwrite ~SinkoDeMayo'? no

student@linux:~$

dir33

dir4?2
file33
file42.copy
SinkoDeMayo

backup
dir42
file33
file42.copy
SinkoDeMayo

9.7 mv

87

9. working with files

9.8. rename

9.8.1. about rename

The rename command is one of the rare occasions where the Linux Fundamentals book has
to make a distinction between Linux distributions. Almost every command in the Funda-
mentals part of this book works on almost every Linux computer. But rename is different.

Try to use mv whenever you need to rename only a couple of files.

9.8.2. rename on Debian/Ubuntu

The rename command on Debian uses regular expressions (regular expression or shor regex
are explained in a later chapter) to rename many files at once.

Below a rename example that switches all occurrences of txt to png for all file names ending
in .txt.

student@linux:~/test42$ 1s

abc.txt file33.txt file42.txt
student@linux:~/test42$ rename 's/\.txt/\.png/' *.txt
student@linux:~/test42$ 1s

abc.png file33.png file42.png

This second example switches all (first) occurrences of file into document for all file names
ending in .png.

student@linux:~/test42$ 1s

abc.png file33.png file42.png

student@linux:~/test42$ rename 's/file/document/' *.png
student@linux:~/test42$ 1s

abc.png document33.png document42.png
student@linux:~/test42$

9.8.3. rename on CentOS/RHEL/Fedora

On Red Hat Enterprise Linux, the syntax of rename is a bit different. The first example below
renames all *.conf files replacing any occurrence of .conf with .backup.

[student@linux ~]$ touch one.conf two.conf three.conf
[student@linux ~1$ rename .conf .backup *.conf
[student@linux ~1$ 1s

one.backup three.backup two.backup

[student@linux ~1%

The second example renames all (*) files replacing one with ONE.

[student@linux ~1$ 1s

one.backup three.backup two.backup
[student@linux ~]$ rename one ONE =*
[student@linux ~1$ 1s

ONE.backup three.backup two.backup
[student@linux ~1$%

88

9.9. practice: working with files
9.9. practice: working with files

1. List the files in the /bin directory
2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.

3a. Download wolfjpg and LinuxFun.pdf from http:/linux-training.be (wget http:/linux-
training.be/files/studentfiles/wolf jpg and wget http:/linux-training.be/files/books/LinuxFun.pdf)

wget http://linux-training.be/files/studentfiles/wolf.jpg
wget http://linux-training.be/files/studentfiles/wolf.png
wget http://linux-training.be/files/books/LinuxFun.pdf

3b. Display the type of file of wolf,jpg and LinuxFun.pdf

3c. Rename wolfjpg to wolf.pdf (use mv).

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

4. Create a directory ~/touched and enter it.

5. Create the files today.txt and yesterday.txt in touched.

6. Change the date on yesterday.txt to match yesterday's date.

7. Copy yesterday.txt to copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

9. Create a directory called ~/testbackup and copy all files from ~/touched into it.
10. Use one command to remove the directory ~/testbackup and all files into it.

11. Create a directory ~/etcbackup and copy all *conf files from /etc into it. Did you include all
subdirectories of fetc ?

12. Use rename to rename all *.conf files to *backup . (if you have more than one distro
available, try it on all!)

9.10. solution: working with files

1. List the files in the /bin directory

1s /bin

2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.
file /bin/cat /etc/passwd /usr/bin/passwd

3a. Download wolfjpg and LinuxFun.pdf from http:/linux-training.be (wget http:/linux-
training.beffiles/studentfiles/wolf jog and wget http:/linux-training.be/files/books/LinuxFun.pdf)

wget http://linux-training.be/files/studentfiles/wolf.jpg
wget http://linux-training.be/files/studentfiles/wolf.png
wget http://linux-training.be/files/books/LinuxFun.pdf

3b. Display the type of file of wolf.jpg and LinuxFun.pdf

file wolf.jpg LinuxFun.pdf

89

9. working with files

3c. Rename wolfjpg to wolf.pdf (use mv).

mv wolf.jpg wolf.pdf

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

file wolf.pdf LinuxFun.pdf

4. Create a directory ~/touched and enter it.

mkdir ~/touched ; cd ~/touched

5. Create the files today.txt and yesterday.txt in touched.

touch today.txt yesterday.txt

6. Change the date on yesterday.txt to match yesterday's date.

touch -t 200810251405 yesterday.txt (substitute 20081025 with yesterday)
7. Copy yesterday.txt to copy.yesterday.txt

cp yesterday.txt copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

mv copy.yesterday.txt kim

9. Create a directory called ~/testbackup and copy all files from ~/touched into it.
mkdir ~/testbackup ; cp -r ~/touched ~/testbackup/

10. Use one command to remove the directory ~/testbackup and all files into it.
rm -rf ~/testbackup

11. Create a directory ~/etcbackup and copy all *conf files from /etc into it. Did you include all
subdirectories of /etc ?

cp -r /etc/*.conf ~/etcbackup

Only *.conf files that are directly in /etc/ are copied.

12. Use rename to rename all *.conf files to *backup . (if you have more than one distro
available, try it on all!)

On RHEL: touch 1.conf 2.conf ; rename conf backup *.conf

On Debian: touch 1.conf 2.conf ; rename 's/conf/backup/' *.conf

90

10. working with file contents

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

In this chapter we will look at the contents of text files with head,

more, lessand strings.

We will also get a glimpse of the possibilities of tools like cat on the command line

10.1. head

You can use head to display the first ten lines of a file.

student@linux~$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:1p:/var/spool/1lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
rootalinux~#

The head command can also display the first n lines of a file.

student@linux~$ head -4 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
student@linux~$

And head can also display the first n bytes.

student@linux~$ head -cl14 /etc/passwd
root:x:0:0:roostudent@linux~$

tac,

91

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

10. working with file contents
10.2. tail

Similar to head, the tail command will display the last ten lines of a file.

student@linux~$ tail /etc/services

vboxd 20012 /udp

binkp 24554/tcp # binkp fidonet protocol

asp 27374/tcp # Address Search Protocol
asp 27374/udp

csync2 30865/tcp # cluster synchronization tool
dircproxy 57000/tcp # Detachable IRC Proxy

tfido 60177/tcp # fidonet EMSI over telnet
fido 60179/tcp # fidonet EMSI over TCP

Local services
student@linux~$

You can give tail the number of lines you want to see.

student@linux~$ tail -3 /etc/services
fido 60179/tcp # fidonet EMSI over TCP

Local services
student@linux~$

The tail command has other useful options, some of which we will use during this course.

10.3. cat

The cat command is one of the most universal tools, yet all it does is copy standard input
to standard output. In combination with the shell this can be very powerful and diverse.
Some examples will give a glimpse into the possibilities. The first example is simple, you can
use cat to display a file on the screen. If the file is longer than the screen, it will scroll to the
end.

student@linux:~$ cat /etc/resolv.conf
domain linux-training.be

search linux-training.be

nameserver 192.168.1.42

10.3.1. concatenate

catisshortfor concatenate. One of the basic uses of cat is to concatenate files into a bigger
(or complete) file.

student@linux:~$ echo one >partil
student@linux:~$ echo two >part2
student@linux:~$ echo three >part3
student@linux:~$ cat partl

one
student@linux:~$ cat part2
two

student@linux:~$ cat part3

92

10.3. cat

three

student@linux:~$ cat partl part2 part3
one

two

three

student@linux:~$ cat partl part2 part3 >all
student@linux:~$ cat all

one

two

three

student@linux:~$

10.3.2. create files

You can use cat to create flat text files. Type the cat > winter.txt commmand as shown
in the screenshot below. Then type one or more lines, finishing each line with the enter key.
After the last line, type and hold the Control (Ctrl) key and press d.

student@linux:~$ cat > winter.txt
It is very cold today!
student@linux:~$ cat winter.txt
It is very cold today!
student@linux:~$

The Ctrl d key combination will send an EOF (End of File) to the running process ending the
cat command.

10.3.3. custom end marker

You can choose an end marker for cat with << as is shown in this screenshot. This construc-
tion is called a here directive and will end the cat command.

student@linux:~$ cat > hot.txt <<stop
> It is hot today!

> Yes it is summer.

> stop

student@linux:~$ cat hot.txt

It is hot today!

Yes it 1s summer.

student@linux:~$

10.3.4. copy files

In the third example you will see that cat can be used to copy files. We will explain in detail
what happens here in the bash shell chapter.

student@linux:~$ cat winter.txt

It is very cold today!

student@linux:~$ cat winter.txt > cold.txt
student@linux:~$ cat cold.txt

It is very cold today!

student@linux:~$

93

10. working with file contents

10.4. tac

Just one example will show you the purpose of tac (cat backwards).

student@linux:~$ cat count
one

two

three

four

student@linux:~$ tac count
four

three

two

one

10.5. more and less

The more command is useful for displaying files that take up more than one screen. More
will allow you to see the contents of the file page by page. Use the space bar to see the next
page, or g to quit. Some people prefer the less command to more.

10.6. strings

With the strings command you can display readable ascii strings found in (binary) files.
This example locates the 1s binary then displays readable strings in the binary file (output is
truncated).

student@linux:~$ which 1s
/bin/1s

student@linux:~$ strings /bin/1ls
/1ib/1d-1inux.so0.2

librt.so.1

__gmon_start__
_Jv_RegisterClasses
clock_gettime

libacl.so.1

10.7. practice: file contents

1. Display the first 12 lines of /etc/services.
2. Display the last line of /etc/passwd.

3. Use cat to create a file named count. txt that looks like this:

One
Two
Three
Four
Five

94

10.8. solution: file contents

4. Use cp to make a backup of this file to cnt. txt.

5. Use cat to make a backup of this file to catcnt. txt.

6. Display catcnt. txt, but with all lines in reverse order (the last line first).

7. Use more to display /etc/services.

8. Display the readable character strings from the /usr/bin/passwd command.
9. Use 1s to find the biggest file in /etc.

10. Open two terminal windows (or tabs) and make sure you are in the same directory in
both. Type echo this is the first line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo This is another line >> tailing.txt (note the double »), verify that the tail -f
in the second terminal shows both lines. Stop the tail -f with Ctrl-C.

11. Use cat to create a file named tailing.txt that contains the contents of tailing. txt
followed by the contents of /etc/passwd.

12. Use cat to create a file named tailing. txt that contains the contents of tailing. txt
preceded by the contents of /etc/passwd.

10.8. solution: file contents

1. Display the first 12 lines of /etc/services.

head -12 /etc/services

2. Display the last line of /etc/passwd.

tail -1 /etc/passwd

3. Use cat to create a file named count. txt that looks like this:

cat > count.txt

One

Two

Three

Four

Five (followed by Ctrl-d)

4. Use cp to make a backup of this file to cnt. txt.

cp count.txt cnt.txt

5. Use cat to make a backup of this file to catcnt. txt.

cat count.txt > catcnt.txt

6. Display catcnt. txt, but with all lines in reverse order (the last line first).
tac catcnt.txt

7. Use more to display /etc/services.

95

10. working with file contents

more /etc/services

8. Display the readable character strings from the /usr/bin/passwd commmand.
strings /usr/bin/passwd

9. Use 1s to find the biggest file in /etc.

1s -1rS /etc

10. Open two terminal windows (or tabs) and make sure you are in the same directory in
both. Type echo this is the first line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo This is another line >> tailing.txt (note the double »), verify that the tail -f
in the second terminal shows both lines. Stop the tail -f with Ctr1-C.

11. Use cat to create a file named tailing. txt that contains the contents of tailing.txt
followed by the contents of /etc/passwd.

cat /etc/passwd >> tailing.txt

12. Use cat to create a file named tailing. txt that contains the contents of tailing. txt
preceded by the contents of /etc/passwd.

mv tailing.txt tmp.txt ; cat /etc/passwd tmp.txt > tailing.txt

96

11. the Linux file tree

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/, Serge Van Ginder-
achter, https;//github.com/srgvg/)

This chapter takes a look at the most common directories in the Linux file tree. It also
shows that on Unix everything is a file.

11.1. filesystem hierarchy standard

Many Linux distributions partially follow the Filesystem Hierarchy Standard. The FHS may
help make more Unix/Linux file system trees conform better in the future. The FHS is avail-
able online at http://ww .pathname.com/fhs/ where we read: "The filesystem hierarchy
standard has been designed to be used by Unix distribution developers, package develop-
ers, and system implementers. However, it is primarily intended to be a reference and is not
a tutorial on how to manage a Unix filesystem or directory hierarchy.”

11.2. man hier

There are some differences in the filesystems between Linux distributions. For help
about your machine, enter man hier to find information about the file system hierarchy.
This manual will explain the directory structure on your computer.

1.3. the root directory /

All Linux systems have a directory structure that starts at the root directory. The root
directory is represented by a forward slash, like this: /. Everything that exists on your Linux
system can be found below this root directory. Let's take a brief look at the contents of the
root directory.

[student@linux ~1$ 1ls /
bin dev home media mnt proc sbin srv tftpboot usr
boot etc 1lib misc opt root selinux sys tmp var

11.4. binary directories

Binaries are files that contain compiled source code (or machine code). Binaries can be
executed on the computer. Sometimes binaries are called executables.

97

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/srgvg/

1. the Linux file tree

1.4.1. /bin

The /bin directory contains binaries for use by all users. According to the FHS the /bin
directory should contain /bin/cat and /bin/date (among others).

In the screenshot below you see common Unix/Linux commands like cat, cp, cpio, date, dd,
echo, grep, and so on. Many of these will be covered in this book.

student@linux:~$ 1ls /bin

archdetect egrep mt setupcon
autopartition false mt-gnu sh

bash fgconsole my sh.distrib
bunzip2 fgrep nano sleep
bzcat fuser nc stralign
bzcmp fusermount nc.traditional stty
bzdiff get_mountoptions netcat su
bzegrep grep netstat sync
bzexe gunzip ntfs-3g sysfs
bzfgrep gzexe ntfs-3g.probe tailf
bzgrep gzip parted_devices tar
bzip2 hostname parted_server tempfile
bzip2recover hw-detect partman touch
bzless ip partman-commit true
bzmore kbd_mode perform_recipe ulockmgr
cat kill pidof umount

11.4.2. other /bin directories

You can find a /bin subdirectory in many other directories. A user named serena could
put her own programs in /home/serena/bin.

Some applications, often when installed directly from source will put themselves in /opt. A
samba server installation can use /opt/samba/bin to store its binaries.

1.4.3. /sbin

/sbin contains binaries to configure the operating system. Many of the system binaries
require root privilege to perform certain tasks.

Below a screenshot containing system binaries to change the ip address, partition a disk
and create an ext4 file system.

student@linux:~$ 1s -1 /sbin/ifconfig /sbin/fdisk /sbin/mkfs.exts
-TWXr-xr-x 1 root root 97172 2011-02-02 09:56 /sbin/fdisk
-rwxr-xr-x 1 root root 65708 2010-07-02 09:27 /sbin/ifconfig
-rwXr-xr-x 5 root root 55140 2010-08-18 18:01 /sbin/mkfs.ext4

N.4.4. /lib

Binaries found in /bin and /sbin often use shared libraries located in /11ib. Below is a
screenshot of the partial contents of /1ib.

98

11.5. configuration directories

student@linux:~$ 1s /1lib/1libc*

/1ib/1libc-2.5.s0 /lib/libcfont.s0.0.0.0 /lib/libcom_err.so.2.1
/lib/1libcap.so.1 /1ib/1libcidn-2.5.s0 /1ib/libconsole.so0.0
/lib/libcap.so0.1.10 /1ib/libcidn.so.1 /1lib/libconsole.s0.0.0.0

/1ib/1libcfont.so.®0 /1lib/libcom_err.so.2 /1ib/libcrypt-2.5.s0

11.4.4.1. /lib/modules

Typically, the Linux kernel loads kernel modules from /1ib/modules/$kernel-version/.
This directory is discussed in detail in the Linux kernel chapter.

N.4.4.2. /lib32 and /lib64

We currently are in a transition between 32-bit and 64-bit systems. Therefore, you may
encounter directories named /1ib32 and /1ib64 which clarify the register size used during
compilation time of the libraries. A 64-bit computer may have some 32-bit binaries and li-
braries for compatibility with legacy applications. This screenshot uses the file utility to
demonstrate the difference.

student@linux:~$ file /1ib32/1libc-2.5.s0

/1ib32/1ibc-2.5.s0: ELF 32-bit LSB shared object, Intel 80386, \
version 1 (SYSV), for GNU/Linux 2.6.0, stripped

student@linux:~$ file /1ib64/1libcap.so0.1.10

/1ib64/1ibcap.s0.1.10: ELF 64-bit LSB shared object, AMD x86-64, \
version 1 (SYSV), stripped

The ELF (Executable and Linkable Format) is used in almost every Unix-like operating
system since System V.

N.4.5. /opt

The purpose of /opt is to store optional software. In many cases this is software from out-
side the distribution repository. You may find an empty /opt directory on many systems.

Alarge package caninstall allitsfilesin /bin, /1ib, /etc subdirectories within /opt/$packagename/.
If for example the package is called wp, then it installs in /opt/wp, putting binaries in
/opt/wp/bin and manpagesin /opt/wp/man.

11.5. configuration directories

1.5.1. /boot

The /boot directory contains all files needed to boot the computer. These files don't change
very often. On Linux systems you typically find the /boot/grub directory here. /boot/grub
contains /boot/grub/grub.cfg (older systems may still have /boot/grub/grub.conf)
which defines the boot menu that is displayed before the kernel starts.

99

1. the Linux file tree

11.5.2. /etc

All of the machine-specific configuration files should be located in /etc. Historically
/etc stood for etcetera, today people often use the Editable Text Configuration back-

ronym.

Many times the name of a configuration files is the same as the application, daemon, or
protocol with .conf added as the extension

student@linux:~$ 1ls /etc/*.conf

/etc/adduser.conf
/etc/brltty.conf
/etc/ccertificates.conf
/etc/cvs-cron.conf
/etc/ddclient.conf
/etc/debconf.conf
/etc/deluser.conf
/etc/fdmount.conf
/etc/hdparm.conf
/etc/host.conf
/etc/inetd.conf
/etc/kernel-img.conf

/etc/ld.so.conf
/etc/1ftp.conf
/etc/libao.conf
/etc/logrotate.conf
/etc/ltrace.conf
/etc/mke2fs.conf
/etc/netscsid.conf
/etc/nsswitch.conf
/etc/pam.conf
/etc/pnm2ppa.conf
/etc/povray.conf
/etc/resolv.conf

/etc/scrollkeeper.conf
/etc/sysctl.conf
/etc/syslog.conf
/etc/ucf.conf
/etc/uniconf.conf
/etc/updatedb.conf
/etc/usplash.conf
/etc/uswsusp.conf
/etc/vnc.conf
/etc/wodim.conf
/etc/wvdial.conf

student@linux:~$

There is much more to be found in /etc.

11.5.2.1. fetc/init.d/

A lot of Unix/Linux distributions have an /etc/init.d directory that contains scripts to start
and stop daemons. This directory could disappear as Linux migrates to systems that replace
the old init way of starting all daemons.

1.5.2.2. fetc/X11/

The graphical display (aka X Window System or just X) is driven by software from the X.org
foundation. The configuration file for your graphical display is /etc/X11/xorg.conf.

1.5.2.3. [etc/skel/

The skeleton directory /etc/skel is copied to the home directory of a newly created user.
It usually contains hidden files like a .bashrc script.

11.5.2.4. /etc/sysconfig/

This directory, which is not mentioned in the FHS, contains a lot of Red Hat Enterprise
Linux configuration files. We will discuss some of them in greater detail. The screenshot
below is the /etc/sysconfig directory from RHELv8u4 with everything installed.

student@linux:~$ 1s /etc/sysconfig/

apmd firstboot irda network saslauthd
apm-scripts grub irgbalance networking selinux
authconfig hidd keyboard ntpd spamassassin
autofs httpd kudzu openib.conf squid
bluetooth hwconf lm_sensors pand syslog

100

11.6. data directories

clock 118n mouse pcmcia sys-config-sec
console init mouse.B pgsql sys-config-users
crond installinfo named prelink sys-logviewer
desktop ipmi netdump rawdevices tux

diskdump iptables netdump_id_dsa rhn vncservers

dund iptables-cfg netdump_id_dsa.p samba xinetd

student@linux:~$

The file /etc/sysconfig/firstboot tells the Red Hat Setup Agent not to run at boot time.
If you want to run the Red Hat Setup Agent at the next reboot, then simply remove this file,
andrun chkconfig --level 5 firstboot on. The Red Hat Setup Agent allows you to install
the latest updates, create a user account, join the Red Hat Network and more. It will then
create the /etc/sysconfig/firstboot file again.

student@linux:~$ cat /etc/sysconfig/firstboot
RUN_FIRSTBOOT=NO

The /etc/sysconfig/harddisks file contains some parameters to tune the hard disks. The
file explains itself.

You can see hardware detected by kudzu in /etc/sysconfig/hwconf. Kudzu is software
from Red Hat for automatic discovery and configuration of hardware.

The keyboard type and keymap table are setinthe /etc/sysconfig/keyboard file. For more
console keyboard information, check the manual pages of keymaps(5), dumpkeys(1), load-
keys(1) and the directory /1ib/kbd/keymaps/.

root@linux:/etc/sysconfig# cat keyboard
KEYBOARDTYPE="pc"
KEYTABLE="us"

We will discuss networking files in this directory in the networking chapter.

11.6. data directories

11.6.1. /home

Users can store personal or project data under /home. It is commmon (but not mandatory
by the fhs) practice to name the users home directory after the user name in the format
/home/$USERNAME. For example:

student@linux:~$ 1s /home
geert annik sandra paul tom

Besides giving every user (or every project or group) a location to store personal files, the
home directory of a user also serves as a location to store the user profile. A typical Unix user
profile contains many hidden files (files whose file name starts with a dot). The hidden files
of the Unix user profiles contain settings specific for that user.

student@linux:~$ 1s -d /home/paul/.*

/home/paul/. /home/paul/.bash_profile /home/paul/.ssh
/home/paul/ .. /home/paul/.bashrc /home/paul/.viminfo
/home/paul/.bash_history /home/paul/.lesshst

101

1. the Linux file tree

11.6.2. /root

On many systems /root is the default location for personal data and profile of the root user.
If it does not exist by default, then some administrators create it.

1.6.3. /srv

You may use /srv for data that is served by your system. The FHS allows locating cvs,
rsync, ftp and www data in this location. The FHS also approves administrative naming in
/[srv, like /srv/project55/ftp and /srv/salesiwww.

On Sun Solaris (or Oracle Solaris) /export is used for this purpose.

11.6.4. /media

The /media directory serves as a mount point for removable media devices such as CD-
ROM's, digital cameras, and various usb-attached devices. Since /media is rather new in the
Unix world, you could very well encounter systems running without this directory. Solaris 9
does not have it, Solaris 10 does. Most Linux distributions today mount all removable media
in /media.

student@linux:~$ ls /media/
cdrom cdrom@ usbdisk

11.6.5. /mnt

The /mnt directory should be empty and should only be used for temporary mount points
(according to the FHS).

Unix and Linux administrators used to create many directories here, like /mnt/something/.
You likely will encounter many systems with more than one directory created and/or
mounted inside /mnt to be used for various local and remote filesystems.

11.6.6. /tmp

Applications and users should use /tmp to store temporary data when needed. Data stored
in /tmp may use either disk space or RAM. Both of which are managed by the operating
system. Never use /tmp to store data that is important or which you wish to archive.

11.7. in memory directories

11.7.1. /dev

Device files in /dev appear to be ordinary files, but are not actually located on the hard disk.
The /dev directory is populated with files as the kernel is recognising hardware.

102

11.7. in memory directories

11.7.1.1. common physical devices

Common hardware such as hard disk devices are represented by device files in /dev. Below
a screenshot of SATA device files on a laptop and then IDE attached drives on a desktop. (The
detailed meaning of these devices will be discussed later.)

#

SATA or SCSI or USB

#

student@linux:~$ 1s /dev/sdx

/dev/sda /dev/sdal /dev/sda2 /dev/sda3 /dev/sdb /dev/sdbl /dev/sdb2

#

IDE or ATAPI

#

student@linux:~$ 1s /dev/hdx

/dev/hda /dev/hdal /dev/hda2 /dev/hdb /dev/hdbl /dev/hdb2 /dev/hdc

Besides representing physical hardware, some device files are special. These special devices
can be very useful.

1.7.1.2. /dev/tty and /dev/pts

For example, /dev/ttyl represents a terminal or console attached to the system. (Don't
break your head on the exact terminology of 'terminal’ or 'console’, what we mean here is a
command line interface.) When typing commmands in a terminal that is part of a graphical
interface like Gnome or KDE, then your terminal will be represented as /dev/pts/1 (1can be
another number).

1.7.1.3. /dev/null

On Linux you will find other special devices such as /dev/null which can be considered a
black hole; it has unlimited storage, but nothing can be retrieved from it. Technically speak-
ing, anything written to /dev/null will be discarded. /dev/null can be useful to discard un-
wanted output from commands. /dev/null is not a good location to store your backups ;-).

1.7.2. /proc conversation with the kernel

/procisanother special directory, appearing to be ordinary files, but not taking up disk space.
It is actually a view of the kernel, or better, what the kernel manages, and is a means to
interact with it directly. /proc is a proc filesystem.

student@linux:~$ mount -t proc
none on /proc type proc (rw)

When listing the /proc directory you will see many numbers (on any Unix) and some inter-
esting files (on Linux)

103

1. the Linux file tree

mul@linux:~$ 1s /proc

1 2339 4724
10175 2523 4729
10211 2783 4741
10239 2975 4873
141 29775 4874
15045 29792 4878
1519 2997 4879
1548 3 4881
1551 30228 4882
1554 3069 5

1557 31422 5073
1606 3149 5147
180 31507 5203
181 3189 5206
182 3193 5228
18898 3246 5272
19799 3248 5291
19803 3253 5294
19804 3372 5356
1987 4 5370
1989 42 5379
2 45 5380
20845 4542 5412
221 46 5414
2338 4704 5416

5418
5421
5658
5661
5665
5927
6

6032
6033
6145
6298
6414
6418
6419
6420
6421
6422
6423
6424
6425
6426
6430
6450
6551
6568

6587
6596
6599
6638
6652
6719
6736
6737
6755
6762
6774
6816
6991
6993
6996
7157
7163
7164
7171
7175
7188
7189
7191
7192
7199

7201
7204
7206
7214
7216
7218
7223
7224
7227
7260
7267
7275
7282
7298
7319
7330
7345
7513
7525
7529
9964
acpi
asound
buddyinfo
bus

cmdline
cpuinfo
crypto
devices
diskstats
dma

driver
execdomains
fb
filesystems
fs

ide
interrupts
iomem
ioports
irq
kallsyms
kcore
key-users
kmsg
loadavg
locks
meminfo
misc
modules

mounts

mtrr

net
pagetypeinfo
partitions
sched_debug
scsi

self
slabinfo
stat

swaps

Sys
sysrq-trigger
sysvipc
timer_list
timer_stats
tty

uptime
version
version_signature
vmcore

vmnet

vmstat
zoneinfo

Let's investigate the file properties inside /proc. Looking at the date and time will display
the current date and time showing the files are constantly updated (a view on the kernel).

student@linux:~$ d
Mon Jan 29 18:06:3
student@linux:~$ 1
-r--r--r-- 1 root
student@linux:~$

student@linux:~$

student@linux:~$

student@linux:~$ d
Mon Jan 29 18:10:0
student@linux:~$ 1
-r--r--r-- 1 root

ate
2 EST 2007
s -al /proc/cpuinfo
root @ Jan 29 18:06 /proc/cpuinfo

... time passes ...

ate
0 EST 2007
s -al /proc/cpuinfo
root @ Jan 29 18:10 /proc/cpuinfo

Most files in /oroc are O bytes, yet they contain data--sometimes a lot of data. You can see this

by executing cat on f

student@linux:~$ f
/proc/cpuinfo: emp
student@linux:~$ ¢
processor :
vendor_id
cpu family
model
model name
stepping
cpu MHz

104

: 43
: AMD Athlon(tm) 64 X2 Dual Core Processor 4600+

les like /proc/cpuinfo, which contains information about the CPU.

ile /proc/cpuinfo

ty
at /proc/cpuinfo

0
: AuthenticAMD

15

1

: 2398.628

11.7. in memory directories

cache size : 512 KB
fdiv_bug : no
hlt_bug : no
foof_bug : no
coma_bug : no

fpu 1 yes
fpu_exception 1 yes
cpuid level : 1

wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge...
bogomips : 4803.54

Just for fun, here is /poroc/cpuinfo on a Sun Sunblade 1000...

student@linux:~$ cat /proc/cpuinfo
cpu : TI UltraSparc III (Cheetah)
fpu : UltraSparc III integrated FPU
promlib : Version 3 Revision 2
prom : 4.2.2

type : sun&u

ncpus probed : 2

ncpus active : 2

CpudBogo : 498.68

Cpu@ClkTck : 000000002ch41780
CpulBogo : 498.68

CpulClkTck : 000000002ch41780

MMU Type : Cheetah

State:

CPUQ: online

CPU1l: online

Most of the files in /proc are read only, some require root privileges, some files are writable,
and many files in /proc/sys are writable. Let's discuss some of the files in /proc.

1.7.2.1. /proc/interrupts

On the x86 architecture, /proc/interrupts displays the interrupts.

student@linux:~$ cat /proc/interrupts

CPUO
0: 13876877 I0-APIC-edge timer
1: 15 I0-APIC-edge 18042
8: 1 IO-APIC-edge rtc
9: @ IO-APIC-level acpi
12: 67 I0-APIC-edge 18042
14: 128 I0-APIC-edge 1ide®
15: 124320 I0-APIC-edge 1idel
169: 111993 I0-APIC-level iocO
177: 2428 IO-APIC-level etho
NMI : 0
LOC: 13878037
ERR: 0
MIS: 0

105

1. the Linux file tree

On a machine with two CPU'’s, the file looks like this.

student@linux:~$ cat /proc/interrupts

CPUO CPU1

0: 860013 ® IO-APIC-edge timer

1: 4533 ® IO-APIC-edge 18042

7: 0 ® IO-APIC-edge parport0

8: 6588227 ® IO-APIC-edge rtc

10: 2314 ® IO-APIC-fasteoi acpi

12: 133 ® IO-APIC-edge 18042

14: 0 @ TI0-APIC-edge libata

15: 72269 ® IO-APIC-edge libata

18: 1 ® IO-APIC-fasteoi vyenta

19: 115036 @ TIO-APIC-fasteoi etho

20: 126871 ® IO-APIC-fasteoi 1libata, ohcil394

21: 30204 ® IO-APIC-fasteoi ehci_hcd:usbl, uhci_hcd:usb2
22: 1334 @ IO-APIC-fasteoi saa7133[0], saa7133[0]
24 234739 ® IO-APIC-fasteoi nvidia
NMI: 72 42
LOC: 860000 859994
ERR: 0

1.7.2.2. /proc/kcore

The physical memory is represented in /proc/kcore. Do not try to cat this file, instead use a
debugger. The size of /proc/kcore is the same as your physical memory, plus four bytes.

student@linux:~$ 1s -1h /proc/kcore
-p----———- 1 root root 2.0G 2007-01-30 08:57 /proc/kcore
student@linux:~$

1.7.3. /sys Linux 2.6 hot plugging

The /sys directory was created for the Linux 2.6 kernel. Since 2.6, Linux uses sysfs to support
usb and IEEE 1394 (FireWire) hot plug devices. See the manual pages of udev(8) (the suc-
cessor of devfs) and hotplug(8) for more info (or visit http://linux-hotplug.sourceforge.net/

).

Basically the /sys directory contains kernel information about hardware.

11.8. /usr Unix System Resources

Although /usris pronounced like user, remember that it stands for Unix System Resources.
The /usr hierarchy should contain shareable, read only data. Some people choose to
mount /usr as read only. This can be done from its own partition or from a read only NFS
share (NFS is discussed later).

106

11.8. /usr Unix System Resources

11.8.1. /usr/bin

The /usr/bin directory contains a lot of commands.

student@linux:~$ 1ls /usr/bin | wc -1
1395

(On Solaris the /bin directory is a symbolic link to /usr/bin.)

11.8.2. /usr/include

The /usr/include directory contains general use include files for C.

student@linux:~$ 1s /usr/include/

aalib.h expat_config.h math.h search.h
af_vfs.h expat_external.h mcheck.h semaphore.h
aio.h expat.h memory . h setjmp.h
AL fcntl.h menu.h sgtty.h
aliases.h features.h mntent.h shadow.h

11.8.3. /usr/lib

The /usr/1ib directory contains libraries that are not directly executed by users or scripts.

student@linux:~$ ls /usr/lib | head -7
4Suite

ao

apt

arj

aspell

avahi

bonobo

11.8.4. /usr/local

The /usr/local directory can be used by an administrator to install software locally.

student@linux:~$ 1s /usr/local/

bin etc games include 1ib man sbin share src
student@linux:~$ du -sh /usr/local/

128K /usr/local/

107

1. the Linux file tree

11.8.5. /usr/share

The /usr/share directory contains architecture independent data. As you can see, this is a
fairly large directory.

student@linux:~$ 1s /usr/share/ | wc -1
263

student@linux:~$ du -sh /usr/share/
1.3G /usr/share/

This directory typically contains /usr/share/man for manual pages.

student@linux:~$ ls /usr/share/man

cs fr hu it.UTF-8 man2 man6 pl.IS08859-2 sv
de fr.IS08859-1 id ja man3 man7 pl.UTF-8 tr
es fr.UTF-8 it ko man4 man8 pt_BR zh_CN
fi gl 1t.IS08859-1 manl man5 pl ru zh_Tw

And it contains /usr/share/games for all static game data (so no high-scores or play logs).

student@linux:~$ 1s /usr/share/games/
openttd wesnoth

11.8.6. /usr/src

The /usr/src directory is the recommended location for kernel source files.

student@linux:~$ 1s -1 /usr/src/

total 12

drwxr-xr-x 4 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-686
drwxr-xr-x 18 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-common
drwxr-xr-x 3 root root 4096 2009-10-28 16:01 linux-kbuild-2.6.26

11.9. /var variable data

Files that are unpredictable in size, such as log, cache and spool files, should be located in
/var.

1.9.1. /var/log

The /var/log directory serves as a central point to contain all log files.

[student@linux ~]$ 1s /var/log

acpid cron.?2 maillog.2 quagga secure.4
amanda cron.3 maillog.3 radius spooler
anaconda.log cron.4 maillog.4 rpmpkgs spooler.1l
anaconda.syslog cups mailman rpmpkgs.1 spooler.2
anaconda.xlog dmesg messages rpmpkgs.2 spooler.3
audit exim messages.1l rpmpkgs.3 spooler.4
boot.log gdm messages.2 rpmpkgs.4 squid
boot.log.1 httpd messages.3 sa uucp
boot.log.2 iiim messages.4 samba vbox

108

11.9. \var variable data

boot.log.3 iptraf mysqld.log scrollkeeper.log vmware-tools-guestd
boot.log.4 lastlog news secure wtmp

canna mail pgsql secure.l wtmp.1

cron maillog ppp secure.?2 Xorg.0.log

cron.l1 maillog.1l prelink.log secure.3 Xorg.0.log.old

1.9.2. /var/log/messages

A typical first file to check when troubleshooting on Red Hat (and derivatives) is the
/var/log/messages file. By default this file will contain information on what just happened
to the system. The file is called /var/log/syslog on Debian and Ubuntu.

[root@linux ~Ht tail /var/log/messages

Jul 30 05:13:56 anacron: anacron startup succeeded

Jul 30 05:13:56 atd: atd startup succeeded

Jul 30 05:13:57 messagebus: messagebus startup succeeded

Jul 30 05:13:57 cups-config-daemon: cups-config-daemon startup succeeded
Jul 30 05:13:58 haldaemon: haldaemon startup succeeded

Jul 30 05:14:00 fstab-sync[3560]: removed all generated mount points

Jul 30 05:14:01 fstab-sync[3628]: added mount point /media/cdrom for ...
Jul 30 05:14:01 fstab-sync[3646]: added mount point /media/floppy for ...
Jul 30 05:16:46 sshd(pam_unix)[3662]: session opened for user paul by ...
Jul 30 06:06:37 su(pam_unix)[3904]: session opened for user root by paul

11.9.3. /var/cache

The /var/cache directory can contain cache data for several applications.

student@linux:~$ 1s /var/cache/

apt dictionaries-common gdm man software-center
binfmts flashplugin-installer hald pm-utils

cups fontconfig jockey pppconfig

debconf fonts ldconfig samba

1.9.4. /var/spool

The /var/spool directory typically contains spool directories for mail and cron, but also
serves as a parent directory for other spool files (for example print spool files).

11.9.5. /var/lib

The /var/1lib directory contains application state information

Red Hat Enterprise Linux for example keeps files pertaining to rpmin /var/lib/rpm/.

1.9.6. /var/...

/var also contains Process ID files in /var/run (soon to be replaced with /run) and tempo-
rary files that survive a reboot in /var/tmp and information about file locks in /var/lock.
There will be more examples of /var usage further in this book.

109

1. the Linux file tree

11.10. practice: file system tree

1. Does the file /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type of
these files ?

2. What is the size of the Linux kernel file(s) (vmlinu*) in /boot ?

3. Create a directory ~/test. Then issue the following commands:

cd ~/test
dd if=/dev/zero of=zeroes.txt count=1 bs=100

od zeroes.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/zero to
~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?

4. Now issue the following command:
dd if=/dev/random of=random.txt count=1 bs=100 ; od random.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/random
to ~/test/random.txt. Can you describe the functionality of /dev/random ?

5. Issue the following two commands, and look at the first character of each output line.

1s -1 /dev/sdx /dev/hdx

1s -1 /dev/tty* /dev/input/moux

The first Is will show block(b) devices, the second |s shows character(c) devices. Can you tell
the difference between block and character devices ?

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the pur-
pose of these files ?

7. Are there any files in /etc/skel/ ? Check also for hidden files.

8. Display /proc/cpuinfo. On what architecture is your Linux running ?

9. Display /proc/interrupts. What is the size of this file ? Where is this file stored ?
10. Can you enter the /root directory ? Are there (hidden) files ?

11. Are ifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are these
binariesin /sbin and notin /bin ?

12. Is /var/1log a file or a directory ? What about /var/spool ?

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-Alt-F1,
Ctrl-Alt-F2, ..) and issue the who am i in both. Then try to echo a word from one terminal to
the other.

14. Read the man page of random and explain the difference between /dev/random and
/dev/urandom.

10

11.71. solution: file system tree

11.11. solution: file system tree

1. Does the file /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type of
these files ?

1s /bin/cat ; file /bin/cat
1s /bin/dd ; file /bin/dd

1s /bin/echo ; file /bin/echo

2. What is the size of the Linux kernel file(s) (vmlinu*) in /boot ?
1s -1h /boot/vm*

3. Create a directory ~/test. Then issue the following commands:

cd ~/test
dd if=/dev/zero of=zeroes.txt count=1 bs=100

od zeroes.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/zero to
~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?

/dev/zeroisa Linux special device. It can be considered a source of zeroes. You cannot send
something to /dev/zero, but you can read zeroes from it.

4. Now issue the following command:
dd if=/dev/random of=random.txt count=1 bs=100 ; od random.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/random
to ~/test/random.txt. Can you describe the functionality of /dev/random ?

/dev/random acts as a random number generator on your Linux machine.

5. Issue the following two commands, and look at the first character of each output line.

1s -1 /dev/sdx /dev/hdx

1s -1 /dev/ttyx /dev/input/moux*

The first Is will show block(b) devices, the second |s shows character(c) devices. Can you tell
the difference between block and character devices ?

Block devices are always written to (or read from) in blocks. For hard disks, blocks of 512
bytes are coommon. Character devices act as a stream of characters (or bytes). Mouse and
keyboard are typical character devices.

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the pur-
pose of these files ?

/etc/hosts/etc/hosts contains hostnames with their ip address

/etc/resolv.conf/etc/resolv.conf should contain the ip address of a DNS name server.

m

11. the Linux file tree

7. Are there any files in /etc/skel/ ? Check also for hidden files.

Issue "ls -al /etc/skel/". Yes, there should be hidden files there.
8. Display /proc/cpuinfo. On what architecture is your Linux running ?

The file should contain at least one line with Intel or other cpu.

9. Display /proc/interrupts. What is the size of this file ? Where is this file stored ?

The size is zero, yet the file contains data. It is not stored anywhere because /proc is a virtual
file system that allows you to talk with the kernel. (If you answered "stored in RAM-memory,
that is also correct...).

10. Can you enter the /root directory ? Are there (hidden) files ?
Try "cd /root". The /root directory is not accessible for normal users on most modern Linux s

1. Are ifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are these
binaries in /sbin and not in /bin ?

Because those files are only meant for system administrators.
12. Is /var/1log a file or a directory ? What about /var/spool ?
Both are directories.

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-Alt-F1,
Ctrl-Alt-F2, ..) and issue the who am i in both. Then try to echo a word from one terminal to
the other.

tty-terminal: echo Hello > /dev/ttyl

pts-terminal: echo Hello > /dev/pts/1

14. Read the man page of random and explain the difference between /dev/random and
/dev/urandom.

man 4 random

12

Part IV.

Shell expansion

n3

12. commands and arguments

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

This chapter introduces you to shell expansion by taking a close look at commands and
arguments. Knowing shell expansion isimportant because many commands on your Linux
system are processed and most likely changed by the shell before they are executed.

The command line interface or shell used on most Linux systems is called bash, which
stands for Bourne again shell. The bash shell incorporates features from sh (the original
Bourne shell), csh (the C shell), and ksh (the Korn shell).

This chapter frequently uses the echo command to demonstrate shell features. The echo
command is very simple: it echoes the input that it receives.

student@linux:~$ echo Burtonville
Burtonville

student@linux:~$ echo Smurfs are blue
Smurfs are blue

12.1. arguments

One of the primary features of a shell is to perform a command line scan. When you enter a
command at the shell's command prompt and press the enter key, then the shell will start
scanning that line, cutting it up in arguments. While scanning the ling, the shell may make
many changes to the arguments you typed.

This processiscalled shell expansion. When the shell hasfinished scanning and modifying
that line, then it will be executed.

12.2. white space removal

Parts that are separated by one or more consecutive white spaces (or tabs) are considered
separate arguments, any white space is removed. The first argument is the command to be
executed, the other arguments are given to the command. The shell effectively cuts your
command into one or more arguments.

This explains why the following four different coommand lines are the same after shell ex-
pansion.

[student@linux ~]$ echo Hello World

Hello World

[student@linux ~]$ echo Hello World

Hello World

[student@linux ~]$ echo Hello World

Hello World

[student@linux ~1$% echo Hello World
Hello World

n5

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

12. commands and arguments

The echo command will display each argument it receives from the shell. The echo com-
mand will also add a new white space between the arguments it received.

12.3. single quotes

You can prevent the removal of white spaces by quoting the spaces. The contents of the
qguoted string are considered as one argument. In the screenshot below the echo receives
only one argument.

[student@linux ~]$ echo 'A line with single quotes'
A line with single quotes
[student@linux ~1$

12.4. double quotes

You can also prevent the removal of white spaces by double quoting the spaces. Same as
above, echo only receives one argument.

[student@linux ~]$ echo "A line with double quotes"
A line with double quotes
[student@linux ~1$

Later in this book, when discussing variables we will see important differences between
single and double quotes.

12.5. echo and quotes

Quoted lines can include special escaped characters recognised by the echo command
(when using echo -e). The screenshot below shows how to use \n for a newline and \t for
a tab (usually eight white spaces).

[student@linux ~]$ echo -e "A line with \na newline"

A line with

a newline

[student@linux ~]$ echo -e 'A line with \na newline'
A line with

a newline

[student@linux ~]$ echo -e "A line with \ta tab"

A line with a tab

[student@linux ~1$ echo -e 'A line with \ta tab'

A line with a tab

[student@linux ~1$

The echo command can generate more than white spaces, tabs and newlines. Look in the
man page for a list of options

16

12.6. commands

12.6. commands

12.6.1. external or builtin commands ?

Not all commands are external to the shell, some are builtin. External commands are pro-
grams that have their own binary and reside somewhere in the file system. Many external
commands are located in /bin or /sbin. Builtin commands are an integral part of the shell
program itself.

12.6.2. type

To find out whether a command given to the shell will be executed asan external command
orasabuiltin command, use the type command.

student@linux:~$ type cd
cd is a shell builtin
student@linux:~$ type cat
cat is /bin/cat

As you can see, the cd command is builtin and the cat command is external.

You can also use this command to show you whether the commmand is aliased or not.

student@linux:~$ type 1s
1s is aliased to "1ls --color=auto'

12.6.3. running external commands

Some commands have both builtin and external versions. When one of these commmands is
executed, the builtin version takes priority. To run the external version, you must enter the
full path to the command.

student@linux:~$ type -a echo

echo is a shell builtin

echo is /bin/echo

student@linux:~$ /bin/echo Running the external echo command ...
Running the external echo command ...

12.6.4. which

The which command will search for binaries in the $PATH environment variable (variables will
be explained later). In the screenshot below, it is determined that cdisbuiltin,and ls, cp,
rm, mv, mkdir, pwd, andwhich are external commmands.

[root@linux ~Ht which cp 1s cd mkdir pwd

/bin/cp

/bin/1s

/usr/bin/which: no cd in (/usr/kerberos/sbin:/usr/kerberos/bin: ...
/bin/mkdir

/bin/pwd

n7

12. commands and arguments

12.7. aliases

12.7.1. create an alias

The shell allowsyou to create aliases. Aliases are often used to create an easier to remember
name for an existing command or to easily supply parameters.

[student@linux ~]$ cat count.txt
one

two

three

[student@linux ~]$ alias dog=tac
[student@linux ~]$ dog count.txt
three

two

one

12.7.2. abbreviate commands

An alias can also be useful to abbreviate an existing commmand.

student@linux:~$ alias 11='1ls -1lh --color=auto'
student@linux:~$ alias c='clear'
student@linux:~$

12.7.3. default options

Aliases can be used to supply commands with default options. The example below shows
how to set the -1 option default when typing rm.

[student@linux ~]$ rm -1 winter.txt

rm: remove regular file “winter.txt'? no
[student@linux ~1]$ rm winter.txt
[student@linux ~1$ 1ls winter.txt

1s: winter.txt: No such file or directory
[student@linux ~]$ touch winter.txt
[student@linux ~]$ alias rm='rm -i'
[student@linux ~1]$ rm winter.txt

rm: remove regular empty file “winter.txt'? no
[student@linux ~1$

Some distributions enable default aliases to protect users from accidentally erasing files ('rm
-, 'mv -1, 'cp -i')
12.7.4. viewing aliases

You can provide one or more aliases as arguments to the alias command to get their defi-
nitions. Providing no arguments gives a complete list of current aliases.

student@linux:~$ alias c 11
alias c='clear'
alias 11='1ls -1h --color=auto’

18

12.8. displaying shell expansion
12.7.5. unalias

You can undo an alias with the unalias command

[student@linux ~1]$ which rm
/bin/rm
[student@linux ~]$ alias rm='rm -i'
[student@linux ~1]$ which rm
alias rm="rm -1i'

/bin/rm
[student@linux ~1]$ unalias rm
[student@linux ~1$ which rm
/bin/rm
[student@linux ~1$%

12.8. displaying shell expansion

You can display shell expansion with set -x, and stop displaying it with set +x. You might
want to use this further on in this course, or when in doubt about exactly what the shell is
doing with your command.

[student@linux ~]$ set -x

+ echo -ne '\033]0;student@linux:~\007"
[student@linux ~1$ echo $USER

+ echo paul

paul

+ echo -ne '\033]0;student@linux:~\007"'
[student@linux ~1%$ echo \$USER

+ echo '$USER'

$USER

+ echo -ne '\033]0;student@linux:~\007"'
[student@linux ~]$ set +x

+ set +X

[student@linux ~1$ echo $USER

paul

12.9. practice: commands and arguments

1. How many arguments are in this line (not counting the command itself).
touch '/etc/cron/cron.allow' 'file 42.txt' "file 33.txt"

2. Is tac a shell builtin command ?
3. Is there an existing alias for rm ?

4. Read the man page of rm, make sure you understand the -i option of rm. Create and
remove a file to test the -1 option.

E. Execute: alias rm="rm -i'. Test your alias with a test file. Does this work as expected
5

6. List all current aliases.

7a. Create an alias called 'city’ that echoes your hometown.

no

12. commands and arguments

7b. Use your alias to test that it works.

8. Execute set -x to display shell expansion for every command.

9. Test the functionality of set -x by executing your city and rm aliases.
10 Execute set +x to stop displaying shell expansion.

11. Remove your city alias.

12. What is the location of the cat and the passwd commands ?

13. Explain the difference between the following commands:

echo

/bin/echo
14. Explain the difference between the following commands:

echo Hello

echo -n Hello

15. Display A B C with two spaces between B and C.

(optional)le. Complete the following command (do not use spaces) to display exactly the
following output:

L+4 =8
10+14 =24

17. Use echo to display the following exactly:
7\\

Find two solutions with single quotes, two with double quotes and one without quotes (and
say thank you to René and Darioush from Google for this extra).

18. Use one echo command to display three words on three lines.

12.10. solution: commands and arguments

1. How many arguments are in this line (not counting the command itself).

touch '/etc/cron/cron.allow' 'file 42.txt' "file 33.txt"

answer: three

2. Is tac a shell builtin command ?
type tac

3. Isthere an existing alias for rm ?

alias rm

120

12.10. solution: commands and arguments

4. Read the man page of rm, make sure you understand the -1i option of rm. Create and
remove a file to test the -1 option.

man rm
touch testfile

rm -i testfile

5. Execute: alias rm='rm -i'. Test your alias with a test file. Does this work as expected
5

touch testfile

rm testfile (should ask for confirmation)

6. List all current aliases.

alias

7a. Create an alias called 'city’ that echoes your hometown.
alias city="echo Antwerp'

7b. Use your alias to test that it works.

city (it should display Antwerp)

8. Execute set -x to display shell expansion for every command.
set -x

9. Test the functionality of set -x by executing your city and rm aliases.

shell should display the resolved aliases and then execute the command:
student@linux:~$ set -x

student@linux:~$ city

+ echo antwerp

antwerp

10 Execute set +x to stop displaying shell expansion.

set +x

1. Remove your city alias

unalias city

12. What is the location of the cat and the passwd commands ?

which cat (probably /bin/cat)

which passwd (probably /usr/bin/passwd)

121

12. commands and arguments

13. Explain the difference between the following commands:
echo

/bin/echo

The echo command will be interpreted by the shell as the built-in echo command. The
/bin/echo commmand will make the shell execute the echo binary located in the /bin di-
rectory.

14. Explain the difference between the following commands:

echo Hello

echo -n Hello

The -n option of the echo command will prevent echo from echoing a trailing newline. echo
Hello will echo six characters in total, echo -n hello only echoes five characters.

(The -n option might not work in the Korn shell))

15. Display A B C with two spaces between B and C.
echo "A B C"

16. Complete the following command (do not use spaces) to display exactly the following
output:

L+t =8
10+14 =24

The solution is to use tabs with \t.
echo -e "4+4\t=8" ; echo -e "10+14\t=24"

17. Use echo to display the following exactly:

7\\

echo '72\\'

echo -e "72\\\\'
echo "72\\\\"
echo -e "72\\\\\\"
echo 72\\\\

Find two solutions with single quotes, two with double quotes and one without quotes (and
say thank you to René and Darioush from Google for this extra).

18. Use one echo command to display three words on three lines.

echo -e "one \ntwo \nthree"

122

13. control operators

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

In this chapter we put more than one command on the command line using control op-
erators. We also briefly discuss related parameters ($?) and similar special characters(&).

13.1. ; semicolon

You can put two or more commands on the same line separated by a semicolon ; . The shell
will scan the line until it reaches the semicolon. All the arguments before this semicolon
will be considered a separate command from all the arguments after the semicolon. Both
series will be executed sequentially with the shell waiting for each command to finish before
starting the next one.

[student@linux ~]$ echo Hello

Hello

[student@linux ~]$ echo World

World

[student@linux ~]$ echo Hello ; echo World
Hello

World

[student@linux ~1$%

13.2. & ampersand

When a line ends with an ampersand &, the shell will not wait for the command to finish.
You will get your shell prompt back, and the command is executed in background. You wil
get a message when this command has finished executing in background.

[student@linux ~]$ sleep 20 &

[1] 7925

[student@linux ~1$

...wait 20 seconds...

[student@linux ~1%

[1]+ Done sleep 20

The technical explanation of what happens in this case is explained in the chapter about
processes.

123

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

13. control operators
13.3. $? dollar question mark

The exit code of the previous command is stored in the shell variable $?. Actually $? is a shell
parameter and not a variable, since you cannot assign a value to $2.

student@linux:~/test$ touch filel
student@linux:~/test$ echo $?

0

student@linux:~/test$ rm filel
student@linux:~/test$ echo $?

0

student@linux:~/test$ rm filel
rm: cannot remove "filel': No such file or directory
student@linux:~/test$ echo $?

1

student@linux:~/test$

13.4. && double ampersand

The shell will interpret 66 asa logical AND. When using &6 the second command is executed
only if the first one succeeds (returns a zero exit status).

student@linux:~$ echo first & echo second
first

second

student@linux:~$ zecho first &5 echo second
-bash: zecho: command not found

Another example of the same logical AND principle. This example starts with a working cd
followed by 1s, then a non-working cd which is not followed by 1s.

[student@linux ~]$ cd gen & 1s

filel file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[student@linux genl]$ cd gen & 1s

-bash: cd: gen: No such file or directory

13.5. || double vertical bar

The || representsa logical OR.The second command is executed only when the first com-
mand fails (returns a non-zero exit status).

student@linux:~$ echo first || echo second ; echo third
first

third

student@linux:~$ zecho first || echo second ; echo third
-bash: zecho: command not found

second

third

student@linux:~$

Another example of the same logical OR principle.

124

13.6. combining && and ||

[student@linux ~]$ cd gen || 1s

[student@linux genl]$ cd gen || 1s

-bash: cd: gen: No such file or directory
filel file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2

13.6. combining && and ||

You can use this logical AND and logical OR to write an if-then-else structure on the com-
mand line. This example uses echo to display whether the rm command was successful.

student@linux:~/test$ rm filel & echo It worked! || echo It failed!
It worked!

student@linux:~/test$ rm filel & echo It worked! || echo It failed!
rm: cannot remove "filel': No such file or directory

It failed!

student@linux:~/test$

13.7. # pound sign

Everything written after a pound sign (#) is ignored by the shell. This is useful to write a
shell comment, but has no influence on the command execution or shell expansion

student@linux:~$ mkdir test # we create a directory
student@linux:~$ cd test #HHHt we enter the directory
student@linux:~/test$ 1s # is it empty ?

student@linux:~/test$

13.8. \ escaping special characters

The backslash \ character enables the use of control characters, but without the shell inter-
preting it, this is called escaping characters.

[student@linux ~]$ echo hello \; world

hello ; world

[student@linux ~]$ echo hello\ \ \ world

hello world

[student@linux ~]$ echo escaping \\\ \#\ \&\ \"\ \'
escaping \ # & " '

[student@linux ~]$ echo escaping \\\?*\"\'
escaping \7x"'

13.8.1. end of line backslash

Lines ending in a backslash are continued on the next line. The shell does not interpret the
newline character and will wait on shell expansion and execution of the commmand line until
a newline without backslash is encountered.

125

13. control operators

[student@linux ~]$ echo This command line \
> is split in three \

> parts

This command line is split in three parts
[student@linux ~]1$%

13.9. practice: control operators

0. Each question can be answered by one command line!

1. When you type passwd, which file is executed ?

2. What kind of file is that ?

3. Execute the pwd command twice. (remember 0.)

4. Execute 1s after cd /etc, butonlyif cd /etc did not error.
5. Execute cd /etc after cd etc, butonlyif cd etc fails.

6. Echo it worked when touch test42 works, and echo it failed when the touch failed.
All on one command line as a normal user (not root). Test this line in your home directory
andin /bin/.

7. Execute sleep 6, what isthis command doing ?
8. Execute sleep 200 in background (do not wait for it to finish).

9. Write a command line that executes rm file55. Your command line should print 'success’
if file55 is removed, and print 'failed’ if there was a problem.

(optional)10. Use echo to display "Hello World with strange’ characters* [} ~\\." (including
all quotes)

13.10. solution: control operators

0. Each question can be answered by one command line!

1. When you type passwd, which file is executed ?

which passwd

2. What kind of file isthat ?

file /usr/bin/passwd

3. Execute the pwd command twice. (remember 0.

pwd ; pwd

4. Execute 1s after cd /etc, butonlyif cd /etc did not error.
cd /etc & 1s

5. Execute cd /etc after cd etc, butonlyif cd etc fails.

cd etc || cd /etc

126

13.10. solution: control operators

6. Echo it worked when touch test42 works, and echo it failed when the touch failed.
All on one command line as a normal user (not root). Test this line in your home directory
andin /bin/.

student@linux:~$ cd ; touch test42 & echo it worked || echo it failed

it worked

student@linux:~$ cd /bin; touch test42 & echo it worked || echo it failed
touch: cannot touch “test42': Permission denied

it failed

7. Execute sleep 6, whatis this command doing ?

pausing for six seconds

8. Execute sleep 200 in background (do not wait for it to finish).
sleep 200 &

9. Write a command line that executes rm file55. Your command line should print 'success’
if file55 is removed, and print 'failed’ if there was a problem.

rm file55 & echo success || echo failed

(optional)10. Use echo to display "Hello World with strange’ characters* [} ~\\." (including
all quotes)

echo \"Hello World with strange\' characters \\ * \[\} \~ \\\\ \. \"
or

echo \""Hello World with strange' characters \ = [} ~ \\ . "\"

127

14. shell variables

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

In this chapter we learn to manage environment variables in the shell. These variables
are often needed by applications.

14.1. $ dollar sign

Another important character interpreted by the shell is the dollar sign $. The shell will look
foran environment variable named like the string following the dollar signand replace
it with the value of the variable (or with nothing if the variable does not exist).

These are some examples using $HOSTNAME, $USER, $UID, $SHELL, and $HOME.

[student@linux ~]$ echo This is the $SHELL shell

This is the /bin/bash shell

[student@linux ~]$ echo This is $SHELL on computer $HOSTNAME
This is /bin/bash on computer RHELv8u3.localdomain
[student@linux ~]$ echo The userid of $USER is $UID

The userid of paul is 500

[student@linux ~]$ echo My homedir is $HOME

My homedir is /home/paul

14.2. case sensitive

This example shows that shell variables are case sensitive!

[student@linux ~]$ echo Hello $USER
Hello paul

[student@linux ~]$ echo Hello $user
Hello

14.3. creating variables

This example creates the variable $MyVar and sets its value. It then uses echo to verify the
value.

[student@linux genl]$ MyVar=555
[student@linux genl]$ echo $Myvar
555

[student@linux genl$

129

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

14. shell variables

14.4. quotes

Notice that double quotes still allow the parsing of variables, whereas single quotes prevent
this.

[student@linux ~]$ MyVar=555
[student@linux ~]$ echo $Myvar

555

[student@linux ~]$ echo "$Myvar"
555

[student@linux ~]$ echo '$MyVar'
$MyVar

The bash shell will replace variables with their value in double quoted lines, but not in single
quoted lines.

student@linux:~$ city=Burtonville
student@linux:~$ echo "We are in $city today."
We are in Burtonville today.

student@linux:~$ echo 'We are in $city today.'
We are in $city today.

14.5. set

You can use the set command to display a list of environment variables. On Ubuntu and
Debian systems, the set command will also list shell functions after the shell variables. Use
set | more to see the variables then.

14.6. unset

Use the unset command to remove a variable from your shell environment.

[student@linux ~1$ MyVar=8472
[student@linux ~]$ echo $Myvar
8472

[student@linux ~]$ unset Myvar
[student@linux ~]$ echo $Myvar

[student@linux ~]$

14.7. $PS1

The $PS1 variable determines your shell prompt. You can use backslash escaped special
characters like \u for the username or \w for the working directory. The bash manual has a
complete reference.

In this example we change the value of $PS1 a couple of times.

130

14.8. $PATH

student@linux:~$ PSl=prompt

prompt
promptPS1="prompt '
prompt

prompt PS1='> '

>

> PS1="\ua\h$ '
student@linux$

student@linux$ PS1="\ua\h:\w$'
student@linux:~$

To avoid unrecoverable mistakes, you can set normal user prompts to green and the root
prompt to red. Add the following to your .bashrc for a green user prompt:

color prompt by paul

RED="\[\033[01;31m\]"

WHITE='\[\033[01;00m\]"

GREEN="'\[\033[01;32m\]"

BLUE="\[\033[01;34m\]"

export PS1="${debian_chroot:+($debian_chroot)}$GREEN\uSWHITEQ$BLUE\h$WHITE\w\$ "

14.8. $PATH

The $PATH variable is determines where the shell is looking for coommands to execute (unless
the commmand is builtin or aliased). This variable contains a list of directories, separated by
colons.

[[student@linux ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:

The shell will not look in the current directory for commmands to execute! (Looking for exe-
cutables in the current directory provided an easy way to hack PC-DOS computers). If you
want the shell to look in the current directory, then add a . at the end of your $PATH.

[student@linux ~1]$ PATH=$PATH:.

[student@linux ~1]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:.
[student@linux ~1$

Your path might be different when using su instead of su - because the latter will take on
the environment of the target user. The root user typically has /sbin directories added to
the $PATH variable.

[student@linux ~1$ su

Password:

[root@linux paull® echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin

[root@linux paulHt exit

[student@linux ~1$ su -

Password:

[root@linux ~H echo $PATH
/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:
[root@linux ~Ht

131

14. shell variables

14.9. env

The env command without options will display a list of exported variables. The differ-
ence with set with optionsis that set lists all variables, including those not exported to child
shells.

But env can also be used to start a clean shell (a shell without any inherited environment).
The env -1 command clears the environment for the subshell.

Notice in this screenshot that bash will set the $SHELL variable on startup.

[student@linux ~]$ bash -c 'echo $SHELL $HOME $USER'
/bin/bash /home/paul paul

[student@linux ~]$ env -i bash -c 'echo $SHELL $HOME $USER'
/bin/bash

[student@linux ~1$

You can use the env command to set the $LANG, or any other, variable for just one instance of
bash with one command. The example below uses this to show the influence of the $LANG
variable on file globbing (see the chapter on file globbing).

[student@linux test]$ env LANG=C bash -c 'ls File[a-z]'

Filea Fileb

[student@linux test]$ env LANG=en US.UTF-8 bash -c 'ls File[a-z]'
Filea FileA Fileb FileB

[student@linux test]$

14.10. export

You can export shell variables to other shells with the export command. This will export the
variable to child shells.

[student@linux ~]$ var3=three
[student@linux ~1$ var4=four
[student@linux ~]$ export varsa
[student@linux ~1]$ echo $var3 $vars
three four

[student@linux ~]$ bash
[student@linux ~]$ echo $var3 $vars
four

But it will not export to the parent shell (previous screenshot continued).

[student@linux ~]$ export var5=five
[student@linux ~]$ echo $var3 $vars $vars
four five

[student@linux ~1% exit

exit

[student@linux ~1$ echo $var3 $vars $vars
three four

[student@linux ~1$%

132

14.11. delineate variables

14.11. delineate variables

Until now, we have seen that bash interprets a variable starting from a dollar sign, continuing
until the first occurrence of a non-alphanumeric character that is not an underscore. In some
situations, this can be a problem. This issue can be resolved with curly braces like in this
example.

[student@linux ~]$ prefix=Super

[student@linux ~]$ echo Hello $prefixman and $prefixgirl
Hello and

[student@linux ~]$ echo Hello ${prefix}man and ${prefix}girl
Hello Superman and Supergirl

[student@linux ~1$

14.12. unbound variables

The example below tries to display the value of the $MyVar variable, but it fails because the
variable does not exist. By default the shell will display nothing when a variable is unbound
(does not exist).

[student@linux genl]$ echo $Myvar

[student@linux genl$

There is, however, the nounset shell option that you can use to generate an error when a
variable does not exist.

student@linux:~$ set -u
student@linux:~$ echo $Myvar
bash: Myvar: unbound variable
student@linux:~$ set +u
student@linux:~$ echo $Myvar

student@linux:~$

In the bash shell set -uisidentical to set -0 nounset and likewise set +u is identical to
set +0 nounset

14.13. practice: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)
2. Create a variable answer with a value of 42.

3. Copy the value of $LANG to $MyLANG.

4. List all current shell variables.

5. List all exported shell variables

6. Do the env and set commands display your variable ?

6. Destroy your answer variable.

7. Create two variables, and export one of them.

133

14. shell variables

8. Display the exported variable in an interactive child shell.

9. Create a variable, give it the value 'Dumb’, create another variable with value 'do’. Use echo
and the two variables to echo Dumbledore.

10. Find the list of backslash escaped characters in the manual of bash. Add the time to your
PS1 prompt.

14.14. solution: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)
echo Hello $USER

2. Create a variable answer with a value of 42.

answer=42

3. Copy the value of $LANG to $MyLANG.

MyLANG=$LANG

4. List all current shell variables.

set

set|more on Ubuntu/Debian
5. List all exported shell variables.

env
export
declare -x

6. Do the env and set commands display your variable ?

env | more
set | more

6. Destroy your answer variable.

unset answer

7. Create two variables, and export one of them.

varl=1; export var2=2

8. Display the exported variable in an interactive child shell.

bash
echo $var2

134

14.14. solution: shell variables

9. Create a variable, give it the value 'Dumb’, create another variable with value 'do’. Use echo
and the two variables to echo Dumbledore.

varx=Dumb; vary=do
echo ${varx}le${varyl}re

solution by Yves from Dexia : echo $varx'le'$vary're’
solution by Erwin from Telenet : echo "$varx"le"$vary"re

10. Find the list of backslash escaped characters in the manual of bash. Add the time to your
PS1 prompt.

PS1="\t \ua\h \W$ '

135

15. shell embedding and options

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

This chapter takes a brief look at child shells, embedded shells and shell options

15.1. shell embedding

Shells can be embedded on the command line, or in other words, the command line scan
can spawn new processes containing a fork of the current shell. You can use variables to
prove that new shells are created. In the screenshot below, the variable $varl only exists in
the (temporary) sub shell.

[student@linux genl]$ echo $varil

[student@linux genl]$ echo $(vari=5;echo $varil)

5

[student@linux genl]$ echo $varil

[student@linux genl$

You can embed a shell in an embedded shell, thisis called nested embedding of shells.

This screenshot shows an embedded shell inside an embedded shell.

student@linux:~$ A=shell
student@linux:~$ echo CB$A $(B=sub;echo CB$A; echo $(C=sub;echo CB$A))
shell subshell subsubshell

15.1.1. backticks

Single embedding can be useful to avoid changing your current directory. The screenshot
below uses backticks instead of dollar-bracket to embed.

[student@linux ~]$ echo “cd /etc; 1s -d * | grep pass’
passwd passwd- passwd.OLD
[student@linux ~1$%

You can only use the $() notation to nest embedded shells, backticks cannot do this.

137

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

15. shell embedding and options

15.1.2. backticks or single quotes

Placing the embedding between backticks uses one character less than the dollar and
parenthesis combo. Be careful however, backticks are often confused with single quotes.
The technical difference between ' and ~ is significant!

[student@linux genl]$ echo “varil=5;echo $varl”
5

[student@linux genl]$ echo 'varl=5;echo $varl'
varl=5;echo $vari

[student@linux genl$

15.2. shell options

Both set and unset are builtin shell cormmands. They can be used to set options of the bash
shell itself. The next example will clarify this. By default, the shell will treat unset variables as
a variable having no value. By setting the -u option, the shell will treat any reference to unset
variables as an error. See the man page of bash for more information.

[student@linux ~1$ echo $vari23

[student@linux ~]$ set -u
[student@linux ~1]$ echo $vari23
-bash: vari123: unbound variable
[student@linux ~1$ set +u
[student@linux ~1$ echo $vari23

[student@linux ~1$

To list all the set options for your shell, use echo $-. The noclobber (or -C) option will be
explained later in this book (in the I/O redirection chapter).

[student@linux ~1$ echo $-

himBH

[student@linux ~]$ set -C ; set -u
[student@linux ~]$ echo $-

himuBCH

[student@linux ~]$ set +C ; set +u
[student@linux ~]$ echo $-

himBH

[student@linux ~1$%

When typing set without options, you get a list of all variables without function when the
shell is on posix mode. You can set bash in posix mode typing set -0 posix.

15.3. practice: shell embedding

1. Find the list of shell options in the man page of bash. What is the difference between set
-uand set -0 nounset?

2. Activate nounset in your shell. Test that it shows an error message when using non-
existing variables.

3. Deactivate nounset.

138

15.4. solution: shell embedding

4. Execute cd /var and ls in an embedded shell.

The echo command is only needed to show the result of the 1s command. Omitting will
result in the shell trying to execute the first file as a commmand.

5. Create the variable embvar in an embedded shell and echo it. Does the variable exist in
your current shell now ?

6. Explain what "set -x" does. Can this be useful ?

(optional)7. Given the following screenshot, add exactly four characters to that command
line so that the total output is FirstMiddlelLast.

[student@linux ~]$ echo First; echo Middle; echo Last
8. Display a long listing (Is -I) of the passwd command using the which commmand inside

an embedded shell.

15.4. solution: shell embedding

1. Find the list of shell options in the man page of bash. What is the difference between set
-uand set -0 nounset?

read the manual of bash (man bash), search for nounset -- both mean the same thing.

2. Activate nounset in your shell. Test that it shows an error message when using non-
existing variables.

set -u
OR
set -0 nounset

Both these lines have the same effect.

3. Deactivate nounset.

set +u
OR
set +0 nounset

4. Execute cd /var and ls in an embedded shell.
echo $(cd /var ; 1s)

The echo command is only needed to show the result of the 1s command. Omitting will
result in the shell trying to execute the first file as a commmand.

5. Create the variable embvar in an embedded shell and echo it. Does the variable exist in
your current shell now ?

echo $(embvar=emb;echo $embvar) ; echo $embvar #the last echo fails

$embvar does not exist in your current shell
6. Explain what "set -x" does. Can this be useful ?

It displays shell expansion for troubleshooting your command.

139

15. shell embedding and options

(optional)7. Given the following screenshot, add exactly four characters to that command
line so that the total output is FirstMiddlelLast.

[student@linux ~]$ echo First; echo Middle; echo Last

echo -n First; echo -n Middle; echo Last

8. Display a long listing (Is -l) of the passwd command using the which commmand inside
an embedded shell.

1s -1 $(which passwd)

140

16. shell history

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

The shell makes it easy for us to repeat commands, this chapter explains how.

16.1. repeating the last command

To repeat the last command in bash, type !!. This is pronounced as bang bang.

student@linux:~/test42$ echo this will be repeated > file&42.txt
student@linux:~/test42$!

echo this will be repeated > file42.txt

student@linux:~/test42$

16.2. repeating other commands

You can repeat other commmands using one bang followed by one or more characters. The
shell will repeat the last command that started with those characters.

student@linux:~/test42$ touch file42
student@linux:~/test42$ cat files42
student@linux:~/test42$!to

touch file42

student@linux:~/test42$

16.3. history

To see older commmands, use history to display the shell command history (or use history
n to see the last n commands).

student@linux:~/test$ history 10

38 mkdir test

39 cd test

40 touch filel

41 echo hello > file2

42 echo It is very cold today > winter.txt

43 1s

44 1s -1

45 cp winter.txt summer.txt
46 1s -1

47 history 10

141

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

16. shell history

16.4. 'n

When typing ! followed by the number preceding the command you want repeated, then
the shell will echo the command and execute it.

student@linux:~/test$!43
1s
filel file2 summer.txt winter.txt

16.5. Ctrl-r

Another option isto use ctrl-r to search in the history. In the screenshot below i only typed
ctrl-rfollowed by four characters aptiandit finds the last commmand containing these four
consecutive characters.

student@linux:~$
(reverse-i-search) apti': sudo aptitude install screen

16.6. $HISTSIZE

The $HISTSIZE variable determines the number of commands that will be remembered in
your current environment. Most distributions default this variable to 500 or 1000.

student@linux:~$ echo $HISTSIZE
500

You can change it to any value you like.

student@linux:~$ HISTSIZE=15000
student@linux:~$ echo $HISTSIZE
15000

16.7. $HISTFILE

The $HISTFILE variable points to the file that contains your history. The bash shell defaults
this value to ~/.bash_history.

student@linux:~$ echo $HISTFILE
/home/paul/.bash_history

A session history is saved to this file when you exit the session!

Closing a gnome-terminal with the mouse, or typing reboot as root will NOT save your ter-
minal’s history.

142

16.8. $HISTFILESIZE

16.8. $HISTFILESIZE

The number of commands kept in your history file can be set using $HISTFILESIZE.

student@linux:~$ echo $HISTFILESIZE
15000

16.9. prevent recording a command

You can prevent a command from being recorded in history using a space prefix.

student@linux:~/github$ echo abc

abc

student@linux:~/github$ echo def
def

student@linux:~/github$ echo ghi
ghi

student@linux:~/github$ history 3
9501 echo abc
9502 echo ghi
9503 history 3

16.10. (optional)regular expressions

It is possible to use regular expressions when using the bang to repeat commands. The
screenshot below switches 1into 2.

student@linux:~/test$ cat filel
student@linux:~/test$!c:s/1/2
cat file2

hello

student@linux:~/test$

16.11. (optional) Korn shell history

Repeating a command in the Korn shell isvery similar. The Korn shell also hasthe history
command, but uses the letter r to recall lines from history.

This screenshot shows the history command. Note the different meaning of the parame-
ter.

$ history 17
17 clear

18 echo hoi
19 history 12
20 echo world
21 history 17

Repeating with r can be combined with the line numbers given by the history command,
or with the first few letters of the command.

143

16. shell history

$re

echo world
world

$ cd /etc
$r

cd /etc

$

16.12. practice: shell history

1. Issue the command echo The answer to the meaning of life, the universe and
everything is 42.

2. Repeat the previous command using only two characters (there are two solutions!)
3. Display the last 5 commands you typed.

4. |ssue the long echo from question 1again, using the line numbers you received from the
command in question 3.

5. How many commands can be kept in memory for your current shell session ?
6. Where are these commands stored when exiting the shell ?

7. How many commands can be writtentothe history file when exiting your current shell
session ?

8. Make sure your current bash shell remembers the next 5000 commands you type.

9. Open more than one console (by press Ctrl-shift-t in gnome-terminal, or by opening an
extra putty.exe in MS Windows) with the same user account. When is command history
written to the history file ?

16.13. solution: shell history

1. Issue the command echo The answer to the meaning of life, the universe and
everything is 42.

echo The answer to the meaning of life, the universe and everything is 42

2. Repeat the previous command using only two characters (there are two solutions!)

1
OR
le

3. Display the last 5 commands you typed.

student@linux:~$ history 5

52 1s -1

53 1s

54 df -h | grep sda

55 echo The answer to the meaning of life, the universe and everything is 42
56 history 5

144

16.13. solution: shell history

You will receive different line numbers.

4. |ssue the long echo from question 1again, using the line numbers you received from the
command in question 3.

student@linux:~$!55
echo The answer to the meaning of life, the universe and everything is 42
The answer to the meaning of life, the universe and everything is 42

5. How many commands can be kept in memory for your current shell session ?
echo $HISTSIZE

6. Where are these commands stored when exiting the shell ?

echo $HISTFILE

7. How many commands can be written tothe history file when exiting your current shell
session ?

echo $HISTFILESIZE
8. Make sure your current bash shell remembers the next 5000 commands you type.
HISTSIZE=5000

9. Open more than one console (by press Ctrl-shift-t in gnome-terminal, or by opening an
extra putty.exe in MS Windows) with the same user account. When is command history
written to the history file ?

when you type exit

145

17. file globbing

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

Typing man 7 glob (on Debian) will tell you that long ago there was a program called
/etc/glob that would expand wildcard patterns.

Today the shell is responsible for file globbing (or dynamic filename generation). This
chapter will explain file globbing

17.1. * asterisk

The asterisk * is interpreted by the shell as a sign to generate filenames, matching the aster-
isk to any combination of characters (even none). When no path is given, the shell will use
filenames in the current directory. See the man page of glob(7) for more information. (This
is part of LPI topic 1.103.3))

1s

File4 File55

1s Filex
Fileab

1s filex

[student@linux genl$
filel file2 file3

[student@linux genl$
File4 File55 FileA
[student@linux genl$

FileA fileab Fileab FileAB fileabc

FileAB

filel file2 file3
[student@linux genl$
File55

[student@linux genl$

fileab fileabc
1s *1ile55

1s F*xile55

File55
[student@linux genl$
File55
[student@linux genl$

1s F*55

17.2. ? question mark

Similar to the asterisk, the question mark ? is interpreted by the shell as a sign to generate
filenames, matching the question mark with exactly one character.

[student@linux genl$ 1s

filel file2 file3 File4 Fileb5 FileA fileab Fileab FileAB fileabc
[student@linux genl]$ 1s File?
File4 FileA

[student@linux genl]$ 1s Filz4
File4

[student@linux genl]$ 1s Fil??
File4 FileA

[student@linux genl]$ 1ls File??
File55 Fileab FileAB
[student@linux genl$

147

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

17. file globbing

17.3. [] square brackets

The square bracket [is interpreted by the shell as a sign to generate filenames, matching
any of the characters between [and the first subsequent]. The order in this list between
the brackets is not important. Each pair of brackets is replaced by exactly one character.

[student@linux genl]$ 1s

filel file2 file3 File4 Fileb55 FileA fileab Fileab FileAB
[student@linux genl]$ 1s File[5A]

FileA

[student@linux genl]$ 1s File[A5]

FileA

[student@linux genl]$ 1s File[A5][5b]

File55

[student@linux genl]$ 1s File[a5]1[5b]

File55 Fileab

[student@linux genl]$ 1s File[a5][5b][abcdefghijklm]

1s: File[a5][5b][abcdefghijklm]: No such file or directory
[student@linux genl]$ 1s file[a5][5b][abcdefghijklm]
fileabc

[student@linux genl$

fileabc

You can also exclude characters from a list between square brackets with the exclamation

mark !. And you are allowed to make combinations of these wild cards.

[student@linux genl$ 1s

filel file2 file3 File4 Fileb55 FileA fileab Fileab FileAB
[student@linux genl]$ 1s filel[a5]1[!Z]

fileab

[student@linux genl]$ 1s file[!5]*

filel file2 file3 fileab fileabc

[student@linux genl]$ 1s file[!5]?

fileab

[student@linux genl$

17.4. a-z and 0-9 ranges
The bash shell will also understand ranges of characters between brackets.

[student@linux genl]$ 1s

filel file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[student@linux genl]$ 1s filel[a-z]x

fileab fileab2 fileabc

[student@linux genl]$ 1s file[0-9]

filel file2 file3

[student@linux genl]$ 1s filel[a-z][a-z][0-9]*
fileab2

[student@linux genl$

148

fileabc

17.5. $LANG and square brackets

17.5. $LANG and square brackets

But, don't forget the influence of the LANG variable. Some languages include lower case
letters in an upper case range (and vice versa).

student@linux:

filel file2

studentalinux:

filel file2

studentalinux:

en_US.UTF-8

student@linux:
student@linux:

C

studentalinux:

filel file2

student@linux:

File4

studentalinux:

If $LC_ALL is set,

~/test$ 1s [A-Z]ile?
file3 File4

~/test$ 1s [a-z]ile?
file3 File4

~/test$ echo $LANG

~/test$ LANG=C
~/test$ echo $LANG

~/test$ 1s [a-z]ile?
file3
~/test$ 1s [A-Z]ile?

~/test$

then this will also need to be reset to prevent file globbing.

17.6. preventing file globbing

The screenshot below should be no surprise. The echo * will echo a * when in an empty
directory. And it will echo the names of all files when the directory is not empty.

student@linux:
studentalinux:
studentalinux:

*

studentalinux:
student@linux:

file33 file42

~$ mkdir test42
~$ cd tests42
~/test42$ echo =*

~/test42$ touch file42 file33
~/test42$ echo *

Globbing can be prevented using quotes or by escaping the special characters, as shown in

this screenshot.

studentalinux
file33 file42

student@linux:

*

studentalinux:

*

student@linux:

*

:~/test42$ echo *

~/test42$ echo *
~/test42$ echo '=*'

~/test42$ echo "x"

17.7. practice: shell globbing

1. Create a test directory and enter it.

2. Create the following files :

149

17. file globbing

filel

filel0

filel1

file2

File2

File3

file33

fileAB

filea

fileA

fileAAA

file(

file 2

(the last one has 6 characters including a space)

3. List (with Is) all files starting with file

4. List (with Is) all files starting with File

5. List (with Is) all files starting with file and ending in a number.
6. List (with Is) all files starting with file and ending with a letter
7. List (with Is) all files starting with File and having a digit as fifth character.

8. List (with Is) all files starting with File and having a digit as fifth character and nothing
else.

9. List (with Is) all files starting with a letter and ending in a number.

10. List (with Is) all files that have exactly five characters.

1. List (with Is) all files that start with for F and end with 3 or A

12. List (with Is) all files that start with fhave i or R as second character and end in a number.
13. List all files that do not start with the letter F.

14. Copy the value of $LANG to $MyLANG.

15. Show the influence of $LANG in listing A-Z or a-z ranges.

16. You receive information that one of your servers was cracked, the cracker probably re-
placed the 1s command. You know that the echo command is safe to use. Can echo replace
1s ? How can you list the files in the current directory with echo ?

17. Is there another commmand besides cd to change directories ?

17.8. solution: shell globbing
1. Create a test directory and enter it.
mkdir testdir; cd testdir

2. Create the following files :

150

17.8. solution: shell globbing

filel
filel0
filell
file2
File2
File3
file33
fileAB
filea
fileA
fileAAA
file(
file 2

(the last one has 6 characters including a space)

touch filel filel0 filell file2 File2 File3
touch file33 fileAB filea fileA fileAAA
touch "file("

touch "file 2"

3. List (with Is) all files starting with file

1s filex

4. List (with Is) all files starting with File

1s Filex

5. List (with Is) all files starting with file and ending in a number.

1s filex[0-9]

6. List (with Is) all files starting with file and ending with a letter

1s filex[a-z]

7. List (with Is) all files starting with File and having a digit as fifth character.
1s File[0-9]*

8. List (with Is) all files starting with File and having a digit as fifth character and nothing
else.

ls File[0-9]

9. List (with Is) all files starting with a letter and ending in a number.
ls [a-z]*[0-9]

10. List (with Is) all files that have exactly five characters.

1s ?2?2?2727

151

17. file globbing

1. List (with Is) all files that start with for F and end with 3 or A.
ls [fF]x[3A]

12. List (with Is) all files that start with f have i or R as second character and end in a number.
ls f[iR]*[0-9]

13. List all files that do not start with the letter F.

1s [!F]*

14. Copy the value of $LANG to $MyLANG.

My LANG=$LANG

15. Show the influence of $LANG in listing A-Z or a-z ranges.
see example in book

16. You receive information that one of your servers was cracked, the cracker probably re-
placed the 1s command. You know that the echo command is safe to use. Can echo replace
1s ? How can you list the files in the current directory with echo ?

echo *
17. Is there another command besides cd to change directories ?

pushd popd

152

Part V.

Pipes and commands

153

18. 1I/O redirection

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

One of the powers of the Unix commmand line is the use of input/output redirectionand
pipes.

This chapter explains redirection of input, output and error streams.

18.1. stdin, stdout, and stderr

The bash shell has three basic streams; it takes input from stdin (stream 0), it sends output
to stdout (stream 1) and it sends error messages to stderr (stream 2) .

The drawing below has a graphical interpretation of these three streams.

stdout (1)

stdin (0) >
== bash
—

|
stderr (2)

The keyboard often serves as stdin, whereas stdout and stderr both go to the display. This
can be confusing to new Linux users because there is no obvious way to recognize stdout
from stderr. Experienced users know that separating output from errors can be very use-
ful.

dlsplay

keyboard >
——— TR
_—

|
display

The next sections will explain how to redirect these streams.

18.2. output redirection

18.2.1. > stdout

stdout can be redirected with a greater than sign. While scanning the line, the shell will
see the > sign and will clear the file.

155

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

18. /O redirection

> file

keyboard I >
[— R
-

l
display

The > notation is in fact the abbreviation of 1> (stdout being referred to as stream 1).

[student@linux ~]$ echo It is cold today!

It is cold today!

[student@linux ~]$ echo It is cold today! > winter.txt
[student@linux ~]$ cat winter.txt

It is cold today!

[student@linux ~1$%

Note that the bash shell effectively removes the redirection from the command line before
argument O is executed. This means that in the case of this command:

echo hello > greetings.txt

the shell only counts two arguments (echo =argument O, hello =argument1). The redirection
is removed before the argument counting takes place.

18.2.2. output file is erased

While scanning the line, the shell will see the > sign and will clear the file! Since this
happens before resolving argument 0, this means that even when the commmand fails, the
file will have been cleared!

[student@linux ~1$ cat winter.txt

It is cold today!

[student@linux ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found

[student@linux ~]$ cat winter.txt

[student@linux ~1$%

18.2.3. noclobber

Erasing a file while using > can be prevented by setting the noclobber option.

[student@linux ~]$ cat winter.txt

It is cold today!

[student@linux ~]$ set -o noclobber

[student@linux ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[student@linux ~]$ set +o noclobber

[student@linux ~1$%

156

18.3. error redirection

18.2.4. overruling noclobber

The noclobber can be overruled with >]|.

[student@linux ~]$ set -o noclobber

[student@linux ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[student@linux ~]$ echo It is very cold today! >| winter.txt
[student@linux ~]$ cat winter.txt

It is very cold today!

[student@linux ~1$%

18.2.5. » append

Use >> to append output to a file.

[student@linux ~]$ echo It is cold today! > winter.txt
[student@linux ~1$ cat winter.txt

It is cold today!

[student@linux ~]$ echo Where is the summer ? >> winter.txt
[student@linux ~]$ cat winter.txt

It is cold today!

Where is the summer ?

[student@linux ~1$

18.3. error redirection

18.3.1. 2> stderr

Redirecting stderr is done with 2>. This can be very useful to prevent error messages from
cluttering your screen.

display

keyboard l >
I_> bash
—

|
2>file

The screenshot below shows redirection of stdout toafile,and stderrto /dev/null. Writing
1> isthe same as >.

[student@linux ~1$ find / > allfiles.txt 2> /dev/null
[student@linux ~1$

18.3.2. 2>&1

To redirect both stdout and stderr to the same file, use 2>&1.

[student@linux ~]$ find / > allfiles_and_errors.txt 2>&1
[student@linux ~1$

Note that the order of redirections is significant. For example, the command

157

18. /O redirection
1s > dirlist 2>61

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the
file dirlist, while the command

1s 2>81 > dirlist

directs only the standard output to file dirlist, because the standard error made a copy of the
standard output before the standard output was redirected to dirlist.

18.4. output redirection and pipes

By default you cannot grep inside stderr when using pipes on the command line, because
only stdout is passed.

student@linux:~$ rm file42 file33 filel1201 | grep file42
rm: cannot remove ‘file42’': No such file or directory
rm: cannot remove ‘file33’': No such file or directory
rm: cannot remove ‘filel201’: No such file or directory

With 2>&1 you can force stderr to goto stdout. This enables the next commmand in the pipe
to act on both streams.

student@linux:~$ rm files42 file33 filel201 2>81 | grep file42
rm: cannot remove ‘file42’: No such file or directory

You cannot use both 1>82 and 2>&1 to switch stdout and stderr.

student@linux:~$ rm file42 file33 filel201 2>8§1 1>82 | grep files42
rm: cannot remove ‘file42’': No such file or directory
student@linux:~$ echo file42 2>§1 1>§2 | sed 's/file42/FILE42/"
FILE42

You need a third stream to switch stdout and stderr after a pipe symbol.

student@linux:~$ echo file42 3>81 1>82 2>83 | sed 's/file42/FILE42/'
file42

student@linux:~$ rm file42 3>&1 1>82 2>83 | sed 's/file42/FILE42/'
rm: cannot remove ‘FILE42': No such file or directory

18.5. joining stdout and stderr

The &> construction will put both stdout and stderr in one stream (to a file).

student@linux:~$ rm file42 &> out_and_err
student@linux:~$ cat out_and_err

rm: cannot remove ‘file42’': No such file or directory
student@linux:~$ echo file42 &> out_and_err
student@linux:~$ cat out_and_err

file42

student@linux:~$

158

18.6. input redirection

18.6. input redirection

18.6.1. < stdin

Redirecting stdin is done with < (short for O<).

[student@linux ~]$ cat < text.txt

one

two

[student@linux ~]$ tr 'onetw' 'ONEZZ' < text.txt
ONE

270

[student@linux ~1$

18.6.2. « here document

The here document (sometimes called here-is-document) is a way to append input until a
certain sequence (usually EOF) is encountered. The EOF marker can be typed literally or can
be called with Ctrl-D.

[student@linux ~1$ cat <<EOF > text.txt
> one

> two

> EOF

[student@linux ~]$ cat text.txt

one

two

[student@linux ~]$ cat <<brol > text.txt
> brel

> brol

[student@linux ~]$ cat text.txt

brel

[student@linux ~1$

18.6.3. «< here string

The here string can be used to directly pass strings to a commmand. The result is the same
as using echo string | command (but you have one less process running).

student@linux~$ base64 <<< linux-training.be
bGludXgtdHJIhawW5pbmcuYmUK

student@linux~$ base64 -d <<< bGludXgtdHJIhaW5pbmcuYmUK
linux-training.be

See rfc 3548 for more information about baseb64.

159

18. /O redirection

18.7. confusing redirection

The shell will scan the whole line before applying redirection. The following command line
is very readable and is correct.

cat winter.txt > snow.txt 2> errors.txt
But this one is also correct, but less readable.

2> errors.txt cat winter.txt > snow.txt
Even this will be understood perfectly by the shell.

< winter.txt > snow.txt 2> errors.txt cat

18.8. quick file clear

So what is the quickest way to clear a file ?

>foo

And what is the quickest way to clear a file when the noclobber option is set ?

>|bar

18.9. practice: input/output redirection

1. Activate the noclobber shell option.

2. Verify that noclobber is active by repeating an 1s on /etc/ with redirected output to a
file.

3. When listing all shell options, which character represents the noclobber option ?

4. Deactivate the noclobber option.

5. Make sure you have two shells open on the same computer. Create anempty tailing. txt
file. Then type tail -f tailing.txt. Use the second shell to append a line of text to that
file. Verify that the first shell displays this line.

6. Create a file that contains the names of five people. Use cat and output redirection to
create the file and use a here document to end the input.

160

18.10. solution: input/output redirection
18.10. solution: input/output redirection

1. Activate the noclobber shell option.

set -0 noclobber
set -C

2. Verify that noclobber is active by repeating an 1s on /etc/ with redirected output to a
file

1s /etc > etc.txt
1s /etc > etc.txt (should not work)

3. When listing all shell options, which character represents the noclobber option ?
echo $- (noclobber is visible as C)

4. Deactivate the noclobber option.

set +o noclobber

5. Make sure you have two shells open on the same computer. Create anempty tailing. txt
file. Then type tail -f tailing.txt. Use the second shell to append a line of text to that
file. Verify that the first shell displays this line.

student@linux:~$ > tailing.txt
student@linux:~$ tail -f tailing.txt
hello

world

in the other shell:
student@linux:~$ echo hello >> tailing.txt
student@linux:~$ echo world >> tailing.txt

6. Create a file that contains the names of five people. Use cat and output redirection to
create the file and use a here document to end the input.

student@linux:~$ cat > tennis.txt << ace
Justine Henin

Venus Williams

Serena Williams

Martina Hingis

Kim Clijsters

> ace

student@linux:~$ cat tennis.txt
Justine Henin

Venus Williams

Serena Williams

Martina Hingis

Kim Clijsters

student@linux:~$

vV V.V VYV

161

19. filters

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

Commands that are created to be used with a pipe are often called filters. These filters
are very small programs that do one specific thing very efficiently. They can be used as
building blocks.

This chapter will introduce you to the most common filters. The combination of simple
commands and filters in a long pipe allows you to design elegant solutions.

19.1. cat

When between two pipes, the cat command does nothing (except putting stdin on std-
out).

[student@linux pipes]$ tac count.txt | cat | cat | cat | cat | cat
five

four

three

two

one

[student@linux pipes]$

19.2. tee

Writing long pipes in Unix is fun, but sometimes you may want intermediate results. This is
were tee comes in handy. The tee filter puts stdin on stdout and also into a file. So tee is
almost the same as cat, except that it has two identical outputs.

[student@linux pipes]$ tac count.txt | tee temp.txt | tac
one

two

three

four

five

[student@linux pipes]$ cat temp.txt
five

four

three

two

one

[student@linux pipesl$

163

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

19. filters

19.3. grep

The grep filter is famous among Unix users. The most common use of grep is to filter lines
of text containing (or not containing) a certain string.

[student@linux pipes]$ cat tennis.txt

Amelie Mauresmo, Fra

Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

Venus Williams, USA

[student@linux pipes]$ cat tennis.txt | grep Williams
Serena Williams, usa

Venus Williams, USA

You can write this without the cat.

[student@linux pipes]$ grep Williams tennis.txt
Serena Williams, usa
Venus Williams, USA

One of the most useful options of grep is grep -i which filters in a case insensitive way.

[student@linux pipes]$ grep Bel tennis.txt
Justine Henin, Bel

[student@linux pipes]$ grep -i Bel tennis.txt
Kim Clijsters, BEL

Justine Henin, Bel

[student@linux pipes]$

Another very useful option is grep -v which outputs lines not matching the string.

[student@linux pipes]$ grep -v Fra tennis.txt
Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

Venus Williams, USA

[student@linux pipes]$

And of course, both options can be combined to filter all lines not containing a case insensi-
tive string.

[student@linux pipes]$ grep -vi usa tennis.txt
Amelie Mauresmo, Fra

Kim Clijsters, BEL

Justine Henin, Bel

[student@linux pipes]$

With grep -Aloneline after the result is also displayed

student@linux:~/pipes$ grep -Al Henin tennis.txt
Justine Henin, Bel
Serena Williams, usa

With grep -B1 oneline before the result is also displayed

164

19.4. cut

student@linux:~/pipes$ grep -B1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel

With grep -C1 (context) one line before and one after are also displayed. All three options
(A,B, and C) can display any number of lines (using e.g. A2, B4 or C20).

student@linux:~/pipes$ grep -C1 Henin tennis.txt
Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

19.4. cut

The cut filter can select columns from files, depending on a delimiter or a count of bytes.
The screenshot below uses cut to filter for the username and userid in the /etc/passwd file.
It uses the colon as a delimiter, and selects fields1and 3

[[student@linux pipes]$ cut -d: -f1,3 /etc/passwd | tail -4
Figo:510

Pfaff:511

Harry:516

Hermione:517

[student@linux pipes]$

When using a space as the delimiter for cut, you have to quote the space.

[student@linux pipes]$ cut -d" " -f1 tennis.txt
Amelie

Kim

Justine

Serena

Venus

[student@linux pipes]$

This example uses cut to display the second to the seventh character of /etc/passwd.

[student@linux pipes]$ cut -c2-7 /etc/passwd | tail -4
igo:x:

faff:x

arry:x

ermion

[student@linux pipesl$

19.5. tr

You can translate characters with tr. The screenshot shows the translation of all occurrences
ofeto E.

165

19. filters

[student@linux pipes]$ cat tennis.txt | tr 'e' 'E'
AmE1TiE MaurEsmo, Fra

Kim ClijstErs, BEL

JustinE HEnin, BEl

SErEna Williams, usa

VEnus Williams, USA

Here we set all letters to uppercase by defining two ranges.

[student@linux pipes]$ cat tennis.txt | tr 'a-z' 'A-Z'
AMELIE MAURESMO, FRA

KIM CLIJSTERS, BEL

JUSTINE HENIN, BEL

SERENA WILLIAMS, USA

VENUS WILLIAMS, USA

[student@linux pipes]$
Here we translate all newlines to spaces.

[student@linux pipes]$ cat count.txt

one

two

three

four

five

[student@linux pipes]$ cat count.txt | tr '\n'
one two three four five [student@linux pipes]$

The tr -s filter can also be used to squeeze multiple occurrences of a character to one.

[student@linux pipes]$ cat spaces.txt
one two three
four five six
[student@linux pipes]$ cat spaces.txt | tr -s
one two three
four five six
[student@linux pipes]$

You can also use tr to 'encrypt’ texts with rot13.

[student@linux pipes]$ cat count.txt | tr 'a-z

bar

gjb

guerr

sbhe

svir

[student@linux pipes]$ cat count.txt | tr
bar

gjb

guerr

sbhe

svir

[student@linux pipes]$

"nopgrstuvwxyzabcdefghijklm'

a-z' 'n-za-m'

This last example uses tr -d to delete characters.

166

student@linux:~/pipes$ cat tennis.txt | tr -d e

Amli Maursmo, Fra
Kim Clijstrs, BEL
Justin Hnin, Bl
Srna Williams, usa
Vnus Williams, USA

19.6. wc

Counting words, lines and characters is easy with wc.

[student@linux pipes]$ wc tennis.txt

5 15 100 tennis.txt
[student@linux pipes]$ wc -1 tennis.txt
5 tennis.txt
[student@linux pipes]$ wc -w tennis.txt
15 tennis.txt
[student@linux pipes]$ wc -c tennis.txt
100 tennis.txt
[student@linux pipes]$

19.7. sort

The sort filter will default to an alphabetical sort.

student@linux:~/pipes$ cat music.txt
Queen

Brel

Led Zeppelin

Abba

student@linux:~/pipes$ sort music.txt
Abba

Brel

Led Zeppelin

Queen

19.6. wc

Butthe sort filter has many options to tweak its usage. This example shows sorting different

columns (column 1 or column 2).

[student@linux pipes]$ sort -ki country.txt
Belgium, Brussels, 10

France, Paris, 60

Germany, Berlin, 100

Iran, Teheran, 70

Italy, Rome, 50

[student@linux pipes]$ sort -k2 country.txt
Germany, Berlin, 100

Belgium, Brussels, 10

France, Paris, 60

Italy, Rome, 50

Iran, Teheran, 70

167

19. filters

The screenshot below shows the difference between an alphabetical sort and a numerical
sort (both on the third column).

[student@linux pipes]$ sort -k3 country.txt
Belgium, Brussels, 10

Germany, Berlin, 100

Italy, Rome, 50

France, Paris, 60

Iran, Teheran, 70

[student@linux pipes]$ sort -n -k3 country.txt
Belgium, Brussels, 10

Italy, Rome, 50

France, Paris, 60

Iran, Teheran, 70

Germany, Berlin, 100

19.8. uniq

With uniq you can remove duplicates from a sorted list.

student@linux:~/pipes$ cat music.txt
Queen

Brel

Queen

Abba

student@linux:~/pipes$ sort music.txt
Abba

Brel

Queen

Queen

student@linux:~/pipes$ sort music.txt |uniq
Abba

Brel

Queen

unig can also count occurrences with the -c option.

student@linux:~/pipes$ sort music.txt |uniq -c
1 Abba
1 Brel
2 Queen

19.9. comm

Comparing streams (or files) can be done with the comm. By default comm will output three
columns. In this example, Abba, Cure and Queen are in both lists, Bowie and Sweet are only
in the first file, Turner is only in the second.

student@linux:~/pipes$ cat > listl.txt
Abba
Bowie
Cure
Queen

168

19.10. od

Sweet
student@linux:~/pipes$ cat > list2.txt
Abba
Cure
Queen
Turner
student@linux:~/pipes$ comm listl.txt list2.txt
Abba
Bowie
Cure
Queen
Sweet

Turner

The output of comm can be easier to read when outputting only a single column. The digits
point out which output columns should not be displayed.

student@linux:~/pipes$ comm -12 listl.txt list2.txt
Abba

Cure

Queen

student@linux:~/pipes$ comm -13 listl.txt list2.txt
Turner

student@linux:~/pipes$ comm -23 listl.txt list2.txt
Bowie

Sweet

19.10. od

European humans like to work with ascii characters, but computers store files in bytes. The
example below creates a simple file, and then uses od to show the contents of the file in
hexadecimal bytes

student@linux:~/test$ cat > text.txt

abcdefg

1234567

student@linux:~/test$ od -t x1 text.txt

0000000 61 62 63 64 65 66 67 0a 31 32 33 34 35 36 37 0a
0000020

The same file can also be displayed in octal bytes.

student@linux:~/test$ od -b text.txt
0000000 141 142 143 144 145 146 147 012 061 062 063 064 065 066 067 012
0000020

And here is the file in ascii (or backslashed) characters.

student@linux:~/test$ od -c text.txt
0000000 a b C d e f g \n 1 2 3 4 5 6 7 \n
0000020

169

19. filters

19.11. sed

The stream editor sed can perform editing functions in the stream, using regular expres-
sions.

student@linux:~/pipes$ echo level5 | sed 's/5/42/'
level4?2

student@linux:~/pipes$ echo level5 | sed 's/level/jump/'
jump5

Add g for global replacements (all occurrences of the string per line).

student@linux:~/pipes$ echo level5 level7 | sed 's/level/jump/'
jump5 level?
student@linux:~/pipes$ echo level5 level7 | sed 's/level/jump/g
jump5 jump?7

With d you can remove lines from a stream containing a character.

student@linux:~/test42$ cat tennis.txt
Venus Williams, USA

Martina Hingis, SUI

Justine Henin, BE

Serena williams, USA

Kim Clijsters, BE

Yanina Wickmayer, BE
student@linux:~/test42$ cat tennis.txt | sed '/BE/d'
Venus Williams, USA

Martina Hingis, SUI

Serena williams, USA

19.12. pipe examples

19.12.1. who | wc

How many users are logged on to this system ?

[student@linux pipes]$ who

root ttyl Jul 25 10:50

paul pts/0 Jul 25 09:29 (laika)
Harry pts/1 Jul 25 12:26 (barry)
paul pts/2 Jul 25 12:26 (pasha)
[student@linux pipes]$ who | wc -1

4

170

19.13. practice: filters

19.12.2. who | cut | sort

Display a sorted list of logged on users.

[student@linux pipes]$ who | cut -d' ' -f1 | sort
Harry
paul
paul
root

Display a sorted list of logged on users, but every user only once .

[student@linux pipes]$ who | cut -d' -f1 | sort | unigq

Harry
paul
root

19.12.3. grep | cut

Display a list of all bash user accounts on this computer. Users accounts are explained in
detail later.

student@linux:~$ grep bash /etc/passwd
root:x:0:0:root:/root:/bin/bash
paul:x:1000:1000:paul,,,:/home/paul:/bin/bash
serena:x:1001:1001 :: /home/serena:/bin/bash
student@linux:~$ grep bash /etc/passwd | cut -d: -f1
root

paul

serena

19.13. practice: filters

1. Put a sorted list of all bash users in bashusers.txt.
2. Put a sorted list of all logged on users in onlineusers.txt.
3. Make a list of all filenames in /etc that contain the string conf in their filename.

4. Make a sorted list of all files in /etc that contain the case insensitive string conf in their
filename.

5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and the
subnet mask.

6. Write a line that removes all non-letters from a stream.
7. Write a line that receives a text file, and outputs all words on a separate line.

8. Write a spell checker on the commmand line. (There may be adictionaryin /usr/share/dict/

)

171

19. filters

19.14. solution: filters

1. Put a sorted list of all bash users in bashusers.txt.

grep bash /etc/passwd | cut -d: -fl | sort > bashusers.txt

2. Put a sorted list of all logged on users in onlineusers.txt.

who | cut -d' ' -f1 | sort > onlineusers.txt

3. Make a list of all filenames in /etc that contain the string conf in their filename.
1s /etc | grep conf

4. Make a sorted list of all files in /etc that contain the case insensitive string conf in their
filename

1s /etc | grep -i conf | sort

5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and the
subnet mask.

/sbin/ifconfig | head -2 | grep 'inet ' | tr -s ' ' | cut -d' ' -f3,5
6. Write a line that removes all non-letters from a stream.

student@linux:~$ cat text

This is, yes really! , a text with ?&% too many str$ange# characters ;-)
student@linux:~$ cat text | tr -d ',!$2. *x5"%#Q;()-"

This is yes really a text with too many strange characters

7. Write a line that receives a text file, and outputs all words on a separate line.

student@linux:~$ cat text2
it is very cold today without the sun

student@linux:~$ cat text2 | tr ' ' '\n'
it

is

very

cold

today

without

the

sun

8. Write a spell checker on the commmand line. (There may be adictionaryin /usr/share/dict/

)

172

19.14. solution: filters

student@linux ~$ echo "The zun is shining today" > text

student@linux ~$ cat > DICT
is

shining

sun

the

today

student@linux ~$ cat text | tr 'A-Z ' 'a-z\n' | sort | uniq | comm -23 - DICT
zun

You could also add the solution from question number 6 to remove non-letters, and tr -s
' ' to remove redundant spaces.

173

20. basic Unix tools

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

This chapter introduces commands to find or locate files and to compress files, together
with other common tools that were not discussed before. While the tools discussed here are
technically not considered filters, they can be used in pipes.

20.1. find

The find command can be very useful at the start of a pipe to search for files. Here are some
examples. You might want to add 2>/dev/null to the command lines to avoid cluttering
your screen with error messages.

Find all files in /etc and put the list in etcfiles.txt

find /etc > etcfiles.txt

Find all files of the entire system and put the list in allfiles.txt
find / > allfiles.txt

Find files that end in .conf in the current directory (and all subdirs).
find . -name "*x.conf"

Find files of type file (not directory, pipe or etc.) that end in .conf.
find . -type f -name "x.conf"

Find files of type directory that end in .bak .

find /data -type d -name "x.bak"

Find files that are newer than file42.txt

find . -newer file42.txt

Find can also execute another commmand on every file found. This example will look for *.odf
files and copy them to /backup/.

find /data -name "x.odf" -exec cp {} /backup/ \;

Find can also execute, after your confirmation, another command on every file found. This
example will remove *.odf files if you approve of it for every file found.

find /data -name "*.odf" -ok rm {} \;

175

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

20. basic Unix tools

20.2. locate

The locate tool is very different from find in that it uses an index to locate files. This is a lot
faster than traversing all the directories, but it also means that it is always outdated. If the
index does not exist yet, then you have to create it (as root on Red Hat Enterprise Linux) with
the updatedb command.

[student@linux ~]$ locate Samba

warning: locate: could not open database: /var/lib/slocate/slocate.db: ...
warning: You need to run the 'updatedb' command (as root) to create th...
Please have a look at /etc/updatedb.conf to enable the daily cron job.
[student@linux ~]$ updatedb

fatal error: updatedb: You are not authorized to create a default sloc...
[student@linux ~1$ su -

Password:

[root@linux ~Ht updatedb

[root@linux ~ht

Most Linux distributions will schedule the updatedb to run once every day.

20.3. date

The date command can display the date, time, time zone and more.

student@linux ~$ date
Sat Apr 17 12:44:30 CEST 2010

A date string can be customised to display the format of your choice. Check the man page
for more options.

student@linux ~$ date +'%A %d-%m-%Y'
Saturday 17-04-2010

Time on any Unix is calculated in number of seconds since 1969 (the first second being the
first second of the first of January 1970). Use date +%s to display Unix time in seconds.

student@linux ~$ date +%s
1271501080

When will this seconds counter reach two thousand million ?

student@linux ~$ date -d '1970-01-01 + 2000000000 seconds'
Wed May 18 04:33:20 CEST 2033

176

20.4. cal

20.4. cal

The cal command displays the current month, with the current day highlighted

student@linux ~$ cal

April 2010
Su Mo Tu We Th Fr Sa
1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

You can select any month in the past or the future.

student@linux ~$ cal 2 1970
February 1970
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

20.5. sleep

The sleep command issometimes used in scripts to wait a number of seconds. Thisexample
shows a five second sleep.

student@linux ~$ sleep 5
student@linux ~$

20.6. time

The time command can display how long it takes to execute a command. The date com-
mand takes only a little time.

student@linux ~$ time date
Sat Apr 17 13:08:27 CEST 2010

real O0m0.014s

user om0 .008s
Sys 0m0.006s

The sleep 5 command takes five real seconds to execute, but consumes little cpu time.

student@linux ~$ time sleep 5

real @m5.018s
user om0 .005s
Sys 0m0.011s

This bzip2 command compresses a file and uses a lot of cpu time.

177

20. basic Unix tools

student@linux ~$ time bzip2 text.txt

real @m2.368s
user om0 .847s
Sys @m0 .539s

20.7. gzip - gunzip

Users never have enough disk space, so compression comes in handy. The gzip command
can make files take up less space.

student@linux ~$ 1s -1lh text.txt

-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt
student@linux ~$ gzip text.txt

student@linux ~$ 1s -1h text.txt.gz

-rw-rw-r-- 1 paul paul 760K Apr 17 13:11 text.txt.gz

You can get the original back with gunzip.

student@linux ~$ gunzip text.txt.gz
student@linux ~$ 1s -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt

20.8. zcat - zmore

Text files that are compressed with gzip can be viewed with zcat and zmore.

student@linux ~$ head -4 text.txt

/

/opt

/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh
student@linux ~$ gzip text.txt
student@linux ~$ zcat text.txt.gz | head -4
/

/opt

/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh

20.9. bzip2 - bunzip2

Files can also be compressed with bzip2 which takes a little more time than gzip, but com-
presses better.

student@linux ~$ bzip2 text.txt

student@linux ~$ 1s -1lh text.txt.bz2

-rw-rw-r-- 1 paul paul 569K Apr 17 13:11 text.txt.bz2

Files can be uncompressed again with bunzip2.

student@linux ~$ bunzip2 text.txt.bz2

student@linux ~$ 1s -1h text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt

178

20.10. bzcat - bzmore

20.10. bzcat - bzmore

And in the same way bzcat and bzmore can display files compressed with bzip2.

student@linux ~$ bzip2 text.txt

student@linux ~$ bzcat text.txt.bz2 | head -4
/

/opt

/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh

20.11. practice: basic Unix tools

1. Explain the difference between these two commands. This question is very important. If
you don’t know the answer, then look back at the shell chapter.

find /data -name "x.txt"

find /data -name *.txt

2. Explain the difference between these two statements. Will they both work when there
are 200 .odf filesin /data ? How about when there are 2 million .odf files ?

find /data -name "%.odf" > data_odf.txt

find /data/*.odf > data_odf.txt

3. Write a find command that finds all files created after January 30th 2010.

4. Write a find command that finds all *odf files created in September 2009.

5. Count the number of *.conf files in /etc and all its subdirs.

6. Here are two commands that do the same thing: copy *.odf files to /backup/. What would
be a reason to replace the first command with the second ? Again, this is an important
qguestion.

cp -r /data/*.odf /backup/

find /data -name "x.odf" -exec cp {} /backup/ \;

7. Create a file called loctest.txt. Can you find this file with locate ? Why not ? How do
you make locate find this file ?

8. Use find and -exec to rename all .htm files to .html.

9. Issue the date command. Now display the date in YYYY/MM/DD format.

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything special ?

179

20. basic Unix tools

20.12. solution: basic Unix tools

1. Explain the difference between these two commands. This question is very important. If
you don't know the answer, then look back at the shell chapter.

find /data -name "*.txt"

find /data -name =*.txt

When *.txt is quoted then the shell will not touch it. The find tool will look in the /data for
all files ending in . txt.

When *.txt is not quoted then the shell might expand this (when one or more files that
ends in .txt exist in the current directory). The find might show a different result, or can
result in a syntax error.

2. Explain the difference between these two statements. Will they both work when there
are 200 . odf filesin /data ? How about when there are 2 million .odf files ?

find /data -name "*.odf" > data_odf.txt

find /data/*.odf > data_odf.txt

The first find will output all .odf filenames in /data and all subdirectories. The shell will
redirect this to a file.

The second find will output all files named .odf in /data and will also output all files that
exist in directories named *.odf (in /data).

With two million files the commmand line would be expanded beyond the maximum that the
shell can accept. The last part of the commmand line would be lost.

3. Write a find command that finds all files created after January 30th 2010.

touch -t 201001302359 marker_date
find . -type f -newer marker_date

There is another solution
find . -type f -newerat "20100130 23:59:59"

4. Write a find command that finds all *odf files created in September 2009.

touch -t 200908312359 marker_start
touch -t 200910010000 marker_end
find . -type f -name "x.odf" -newer marker_start ! -newer marker_end

The exclamation mark ! -newer can be read as not newer.

5. Count the number of *conf files in fetc and all its subdirs.
find /etc -type f -name 'x.conf' | wc -1

6. Here are two commands that do the same thing: copy *.odf files to /backup/. What would
be a reason to replace the first command with the second ? Again, this is an important
guestion.

180

20.12. solution: basic Unix tools
cp -r /data/*.odf /backup/
find /data -name "x.odf" -exec cp {} /backup/ \;

The first might fail when there are too many files to fit on one command line.

7. Create a file called loctest.txt. Can you find this file with locate ? Why not ? How do
you make locate find this file ?

You cannot locate this with locate because it is not yet in the index.
updatedb
8. Use find and -exec to rename all .htm files to .html.

student@linux ~$ find . -name 'x.htm'

./one.htm

./two.htm

student@linux ~$ find . -name 'x.htm' -exec mv {} {}1 \;
student@linux ~$ find . -name '*.htmx'

./one.html

./two.html

9. Issue the date command. Now display the date in YYYY/MM/DD format.

date +%Y/%m/%d

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything special ?
cal 1582

The calendars are different depending on the country. Check http:/linux-training.be/files/studentfiles/date:

181

21. regular expressions

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

Regular expressions are a very powerful tool in Linux. They can be used with a variety of
programs like bash, vi, rename, grep, sed, and more.

This chapter introduces you to the basics of regular expressions.

21.1. regex versions

There are three different versions of regular expression syntax:

BRE: Basic Regular Expressions
ERE: Extended Regular Expressions
PRCE: Perl Regular Expressions

Depending on the tool being used, one or more of these syntaxes can be used.

For example the grep tool has the -E option to force a string to be read as ERE while -G forces
BRE and -P forces PRCE.

Note that grep also has -F to force the string to be read literally.
The sed tool also has options to choose a regex syntax.

Read the manual of the tools you use!

21.2. grep

21.2.1. print lines matching a pattern

grep is a popular Linux tool to search for lines that match a certain pattern. Below are some
examples of the simplest regular expressions.

This is the contents of the test file. This file contains three lines (or three newline charac-
ters).

student@linux:~$ cat names
Tania

Laura

Valentina

When grepping for a single character, only the lines containing that character are re-
turned.

183

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

21. regular expressions

student@linux:~$ grep u names
Laura

student@linux:~$ grep e names
Valentina

student@linux:~$ grep i names
Tania

Valentina

The pattern matching in this example should be very straightforward; if the given character
occurs on a ling, then grep will return that line.

21.2.2. concatenating characters

Two concatenated characters will have to be concatenated in the same way to have a
match.

This example demonstrates that ia will match Tania but not Valentina and in will match
Valentina but not Tania.

student@linux:~$ grep a names
Tania

Laura

Valentina

student@linux:~$ grep ia names
Tania

student@linux:~$ grep in names
Valentina

student@linux:~$

21.2.3. one or the other

PRCE and ERE both use the pipe symbol to signify OR. In this example we grep for lines
containing the letter i or the letter a

student@linux:~$ cat list
Tania
Laura
student@linux:~$ grep -E
Tania
Laura

ila' list

Note that we use the -E switch of grep to force interpretion of our string as an ERE.
We need to escape the pipe symbol in a BRE to get the same logical OR.
student@linux:~$ grep -G 'ila' list

student@linux:~$ grep -G 'i\la' list

Tanila
Laura

184

21.2. grep
21.2.4. one or more

The * signifies zero, one or more occurences of the previous and the + signifies one or more
of the previous.

student@linux:~$ cat list2

11

lol

lool

loool

student@linux:~$ grep -E 'o*' list2
11

lol

lool

loool

student@linux:~$ grep -E 'o+' list2
lol

lool

loool
studentalinux:

14
-

21.2.5. match the end of a string
For the following examples, we will use this file.

student@linux:~$ cat names
Tania

Laura

Valentina

Fleur

Floor

The two examples below show how to use the dollar character to match the end of a
string.

student@linux:~$ grep a$ names
Tania

Laura

Valentina

student@linux:~$ grep r$ names
Fleur

Floor

21.2.6. match the start of a string

The caret character (") will match a string at the start (or the beginning) of a line.
Given the same file as above, here are two examples.

student@linux:~$ grep "“val names

Valentina

student@linux:~$ grep “F names

Fleur
Floor

Both the dollar sign and the little hat are called anchors in a regex.

185

21. regular expressions

21.2.7. separating words

Regular expressions use a \b sequence to reference a word separator. Take for example this
file:

student@linux:~$ cat text
The governer is governing.
The winter is over.

Can you get over there?

Simply grepping for over will give too many results.

student@linux:~$ grep over text
The governer is governing.

The winter 1is over.

Can you get over there?

Surrounding the searched word with spaces is not a good solution (because other characters
can be word separators). This screenshot below show how to use \b to find only the searched
word:

student@linux:~$ grep '\bover\b' text
The winter is over.

Can you get over there?
student@linux:~$

Note that grep also has a -w option to grep for words.

student@linux:~$ cat text

The governer is governing.

The winter is over.

Can you get over there?
student@linux:~$ grep -w over text
The winter 1is over.

Can you get over there?
student@linux:~$

21.2.8. grep features

Sometimes it is easier to combine a simple regex with grep options, than it is to write a more
complex regex. These options where discussed before:

grep -i
grep -v
grep -w
grep -A5
grep -B5
grep -C5

186

21.3. rename

21.2.9. preventing shell expansion of a regex

The dollar sign is a special character, both for the regex and also for the shell (remember vari-
ables and embedded shells). Therefore it is advised to always quote the regex, this prevents
shell expansion.

student@linux:~$ grep 'r$' names
Fleur
Floor

21.3. rename

21.3.1. the rename command

On Debian Linux the /usr/bin/rename command is a link to /usr/bin/prename installed
by the perl package.

student@linux ~ $ dpkg -S $(readlink -f $(which rename))
perl: /usr/bin/prename

Red Hat derived systems do not install the same rename command, so this section does not
describe rename on Red Hat (unless you copy the perl script manually).

There is often confusion on the internet about the rename command because
solutions that work fine in Debian (and Ubuntu, xubuntu, Mint, ...) cannot be
used in Red Hat (and CentOS, Fedora, ...).

21.3.2. perl

The rename command is actually a perl script that uses perl regular expressions. The
complete manual for these can be found by typing perldoc perlrequick (after installing
perldoc).

root@linux:~# aptitude install perl-doc
The following NEW packages will be installed:

perl-doc
0 packages upgraded, 1 newly installed, @ to remove and @ not upgraded.
Need to get 8,170 kB of archives. After unpacking 13.2 MB will be used.
Get: 1 http://mirrordirector.raspbian.org/raspbian/ wheezy/main perl-do ...
Fetched 8,170 kB in 19s (412 kB/s)
Selecting previously unselected package perl-doc.
(Reading database ... 67121 files and directories currently installed.)
Unpacking perl-doc (from .../perl-doc_5.14.2-21+rpi2_all.deb)
Adding 'diversion of /usr/bin/perldoc to /usr/bin/perldoc.stub by perl-doc'
Processing triggers for man-db ...
Setting up perl-doc (5.14.2-21+rpi2)

root@linux:~# perldoc perlrequick

187

21. regular expressions

21.3.3. well known syntax

The most commmon use of the rename is to search for filenames matching a certain string
and replacing this string with an other string.

This is often presented as s/string/other string/ asseen in this example:

student@linux ~ $ 1s

abc allfiles.TXT bllfiles.TXT Scratch tennis2.TXT
abc.conf backup cllfiles.TXT temp.TXT tennis.TXT
student@linux ~ $ rename 's/TXT/text/' *

student@linux ~ $ 1s

abc allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup cllfiles.text temp.text tennis.text

And here is another example that uses rename with the well know syntax to change the
extensions of the same files once more:

student@linux ~ $ 1s

abc allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup cllfiles.text temp.text tennis.text
student@linux ~ $ rename 's/text/txt/' *.text

student@linux ~ $ 1s

abc allfiles.txt bllfiles.txt Scratch tennis2.txt
abc.conf backup cllfiles.txt temp.txt tennis.txt
student@linux ~ $

These two examples appear to work because the strings we used only exist at the end of the
filename. Remember that file extensions have no meaning in the bash shell.

The next example shows what can go wrong with this syntax.

student@linux ~ $ touch atxt.txt

student@linux ~ $ rename 's/txt/problem/' atxt.txt

student@linux ~ $ 1s

abc allfiles.txt backup cllfiles.txt temp.txt tennis.txt
abc.conf aproblem.txt bllfiles.txt Scratch tennis2.txt
student@linux ~ $

Only the first occurrence of the searched string is replaced.

21.3.4. a global replace

The syntax used in the previous example can be described as s/regex/replacement/. Thisis
simple and straightforward, you enter a regex between the first two slashes and a replace-
ment string between the last two.

This example expands this syntax only a little, by adding a modifier.
student@linux ~ $ rename -n 's/TXT/txt/g' aTXT.TXT

aTXT.TXT renamed as atxt.txt
student@linux ~ $

The syntax we use now can be described as s/regex/replacement/g where s signifies
switch and g stands for global.

Note that this example used the -n switch to show what is being done (instead of actually
renaming the file).

188

21.4. sed
21.3.5. case insensitive replace

Another modifier that can be useful is i. this example shows how to replace a case insensi-
tive string with another string.

student@linux:~/files$ 1s

filel.text file2.TEXT file3.txt
student@linux:~/files$ rename 's/.text/.txt/i' =
student@linux:~/files$ 1s

filel.txt file2.txt file3.txt
student@linux:~/files$

21.3.6. renaming extensions
Command line Linux has no knowledge of MS-DOS like extensions, but many end users and
graphical application do use them.

Here is an example on how to use rename to only rename the file extension. It uses the dollar
sign to mark the ending of the filename.

student@linux ~ $ 1s *.txt

allfiles.txt bllfiles.txt cllfiles.txt really.txt.txt temp.txt tennis.txt
student@linux ~ $ rename 's/.txt$/.TXT/' *.txt

student@linux ~ $ 1s *.TXT

allfiles.TXT bllfiles.TXT cllfiles.TXT really.txt.TXT

temp.TXT tennis.TXT

student@linux ~ $

Note that the dollar sign in the regex means at the end. Without the dollar sign this
command would fail on the really.txt.txt file.

21.4. sed

21.4.1. stream editor

The stream editor or short sed uses regex for stream editing.

In this example sed is used to replace a string

echo Sunday | sed 's/Sun/Mon/'
Monday

The slashes can be replaced by a couple of other characters, which can be handy in some
cases to improve readability.

echo Sunday | sed 's:Sun:Mon:'

Monday
echo Sunday | sed 's_Sun_Mon_'
Monday
echo Sunday | sed 's|Sun|Mon]'
Monday

189

21. regular expressions

21.4.2. interactive editor
While sed is meant to be used in a stream, it can also be used interactively on a file.

student@linux:~/files$ echo Sunday > today
student@linux:~/files$ cat today

Sunday

student@linux:~/files$ sed -i 's/Sun/Mon/' today
student@linux:~/files$ cat today

Monday

21.4.3. simple back referencing

The ampersand character can be used to reference the searched (and found) string.
In this example the ampersand is used to double the occurence of the found string.
echo Sunday | sed 's/Sun/&&/"

SunSunday

echo Sunday | sed 's/day/&&/'
Sundayday

21.4.4. back referencing

Parentheses (often called round brackets) are used to group sections of the regex so they
can leter be referenced.

Consider this simple example:

student@linux:~$ echo Sunday | sed 's_\(Sun\)_\1ny_"

Sunnyday

student@linux:~$ echo Sunday | sed 's_\(Sun\)_\1ny \1_'
Sunny Sunday

21.4.5. a dot for any character

In a regex a simple dot can signify any character.

student@linux:~$ echo 2014-04-01 | sed 's/....-..-../YYYY-MM-DD/"
YYYY-MM-DD
student@linux:~$ echo abcd-ef-gh | sed 's/....-..-../YYYY-MM-DD/"'
YYYY-MM-DD

21.4.6. multiple back referencing

When more than one pair of parentheses is used, each of them can be referenced separately
by consecutive numbers.

student@linux:~$ echo 2014-04-01 | sed 's/\(....\)-\(..\)-\(..\)/\1+\2+\3/"'
2014+04+01
student@linux:~$ echo 2014-04-01 | sed 's/\(....\)=-\(..\)-\(..\)/\3:\2:\1/"
01:04:2014

This feature is called grouping.

190

21.4. sed

21.4.7. white space

The \s can refer to white space such as a space or a tab.

This example looks for white spaces (\s) globally and replaces them with 1space.

student@linux:~$ echo -e 'today\tis\twarm'

today is warm

student@linux:~$ echo -e 'today\tis\twarm' | sed 's_\s_ _g'
today is warm

21.4.8. optional occurrence

A guestion mark signifies that the previous is optional.

The example below searches for three consecutive letter o, but the third o is optional.

student@linux:~$ cat list2

11

lol

lool

loool

student@linux:~$ grep -E 'o0o00?' list2
lool

loool

student@linux:~$ cat 1ist2 | sed 's/o0o0o0\?/A/'
11

lol

1AL

1AL

21.4.9. exactly n times

You can demand an exact number of times the oprevious has to occur.

This example wants exactly three o's.

student@linux:~$ cat list2

11

lol

lool

loool

student@linux:~$ grep -E 'o{3}' list2
loool

student@linux:~$ cat list2 | sed 's/o\{3\}/A/'
11

lol

lool

1Al

student@linux:~$

191

21. regular expressions

21.4.10. between n and m times
And here we demand exactly from minimum 2 to maximum 3 times.

student@linux:~$ cat list2

11

lol

lool

loool

student@linux:~$ grep -E '0{2,3}"' list2
lool

loool

student@linux:~$ grep 'o\{2,3\}' list2
lool

loool

student@linux:~$ cat 1ist2 | sed 's/o\{2,3\}/A/'
11

lol

1AL

1AL

student@linux:~$

21.5. bash history

The bash shell can also interprete some regular expressions.

This example shows how to manipulate the exclamation mask history feature of the bash
shell.

student@linux:~$ mkdir hist
student@linux:~$ cd hist/
student@linux:~/hist$ touch filel file2 file3
student@linux:~/hist$ 1s -1 filel
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 filel
student@linux:~/hist$!1

1s -1 file1l

-rw-r--r-- 1 paul paul 0 Apr 15 22:07 filel
student@linux:~/hist$!'1:s/1/3

1s -1 file3

-rw-r--r-- 1 paul paul @ Apr 15 22:07 file3
student@linux:~/hist$

This also works with the history numbers in bash.

student@linux:~/hist$ history 6
2089 mkdir hist

2090 «cd hist/

2091 touch filel file2 file3
2092 1s -1 filel

2093 1s -1 file3

2094 history 6
student@linux:~/hist$!2092
1s -1 filel

-rw-r--r-- 1 paul paul 0 Apr 15 22:07 filel
student@linux:~/hist$!2092:s5/1/2
1s -1 file2

192

21.5. bash history

-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file2
student@linux:~/hist$

193

Part VI.

Vi

195

22. Introduction to vi

(Written by Paul Cobbaut, https;//github.com/paulcobbaut/)

The vi editor is installed on almost every Unix. Linux will very often install vim (vi improved)
which is similar. Every system administrator should know vi(m), because it is an easy tool to
solve problems.

The vi editor is not intuitive, but once you get to know it, vi becomes a very powerful ap-
plication. Most Linux distributions will include the vimtutor which is a 45 minute lesson in
vi(m).

22.1. command mode and insert mode

The vi editor starts in command mode. In command mode, you can type commands. Some
commands will bring you into insert mode. In insert mode, you can type text. The escape
key will return you to command mode.

Table 22.1.: getting to command mode

key action

Esc set vi(m) in command mode.

22.2. starttyping(aAilo O)

The difference betweena Ailoand Oisthelocation where you can start typing. a willappend
after the current character and A will append at the end of the line. i will insert before the
current character and | will insert at the beginning of the line. o will put you in a new line
after the current line and O will put you in a new line before the current line.

Table 22.2.: switch to insert mode

command action

a start typing after the current character

A start typing at the end of the current line

i start typing before the current character

| start typing at the start of the current line

o) start typing on a new line after the current line
O start typing on a new line before the current line

197

https://github.com/paulcobbaut/

22. Introduction to vi

22.3. replace and delete a character (r x X)

When in command mode (it doesn't hurt to hit the escape key more than once) you can use
the x key to delete the current character. The big X key (or shift x) will delete the character
left of the cursor. Also when in command mode, you can use the r key to replace one single
character. The r key will bring you in insert mode for just one key press, and will return you
immediately to command mode.

Table 22.3.: replace and delete

command action
X delete the character below the cursor
X delete the character before the cursor
r replace the character below the cursor
p paste after the cursor (here the last deleted character)
Xp switch two characters

22.4. undo, redo and repeat (u.)

When in command mode, you can undo your mistakes with u. Use ctrl-r to redo the
undo.

You can do your mistakes twice with . (in other words, the . will repeat your last commmand).

Table 22.4.: undo and repeat

command action

u undo the last action
ctrl-r redo the last undo
repeat the last action

22.5. cut, copy and paste a line (dd yy p P)

When in command mode, dd will cut the current line. yy will copy the current line. You can
paste the last copied or cut line after (p) or before (P) the current line.

Table 22.5.: cut, copy and paste a line

command action

dd cut the current line

W, (yank yank) copy the current line
p paste after the current line

P paste before the current line

22.6. cut, copy and paste lines (3dd 2yy)

When in command mode, before typing dd or yy, you can type a number to repeat the com-
mand a number of times. Thus, 5dd will cut 5 lines and 4yy will copy (yank) 4 lines. That last
one will be noted by vi in the bottom left corner as "4 line yanked".

198

22.7. start and end of a line (O or A and $)

Table 22.6.: cut, copy and paste lines

command action

3dd cut three lines
4yy copy four lines

22.7. start and end of a line (0 or A and $)

When in command mode, the O and the caret A will bring you to the start of the current line,
whereas the $ will put the cursor at the end of the current line. You can add 0 and $ to the
d command, dO will delete every character between the current character and the start of
the line. Likewise d$ will delete everything from the current character till the end of the line.
Similarly yO and y$ will yank till start and end of the current line.

Table 22.7.: start and end of line
command action

0 jump to start of current line
A jump to start of current line
$ jump to end of current line
do delete until start of line
d$ delete until end of line

22.8. join two lines (J) and more

When in command mode, pressing J will append the next line to the current line. With yyp
you duplicate a line and with ddp you switch two lines.

Table 22.8.: join two lines

command action

J join two lines
yyp duplicate a line
ddp switch two lines

22.9. words (w b)

When in command mode, w will jump to the next word and b will move to the previous word.
w and b can also be combined with d and y to copy and cut words (dw db yw yb).

Table 22.9.: words

command action

w forward one word
b back one word
3w forward three words
dw delete one word
YW yank (copy) one word

199

22. Introduction to vi

command action

Syb yank five words back
7dw delete seven words

22.10. save (or not) and exit (:w:q:q!)

Pressing the colon : will allow you to give instructions to vi (technically speaking, typing the
colon will open the ex editor). :w will write (save) the file, :q will quit an unchanged file
without saving, and :q! will quit vi discarding any changes. :wq will save and quit and is the
same as typing ZZ in command mode.

Table 22.10.: save and exit vi

command action
W save (write)
‘w fname save as fname
:q quit
el save and quit
7 save and quit
:q! quit (discarding your changes)
w! save (and write to non-writable file!)

The last one is a bit special. With :w! vi will try to chmod the file to get write permission (this
works when you are the owner) and will chmod it back when the write succeeds. This should
always work when you are root (and the file system is writable).

22.11. Searching (/?)

When in command mode typing / will allow you to search in vi for strings (can be a regular
expression). Typing /foo will do a forward search for the string foo and typing ?bar will do a
backward search for bar.

Table 22.11.: searching

command action
/string forward search for string
?string backward search for string
N go to next occurrence of search string
/nstring forward search string at beginning of line
/string$ forward search string at end of line
/brlaeio]l search for bral brel bril and brol
N<he\> search for the word he (and not for here or the)

22.12. replace all (:1,$ s/foo/bar/g)

To replace all occurrences of the string foo with bar, first switch to ex mode with : . Then tell
vi which lines to use, for example 1,$ will do the replace all from the first to the last line. You
can write 1,5 to only process the first five lines. The s/foo/bar/g will replace all occurrences of
foo with bar.

200

22.13. reading files (:r :r lcmd)

Table 22.12.: replace

command action
4,8 s/foo/bar/g replace foo with bar on lines 4 to 8
1,$ s/foo/bar/g replace foo with bar on all lines

22.13. reading files (:r :r 'cmd)

When in command mode, :r foo will read the file named foo, :r Ifoo will execute the command
foo. The result will be put at the current location. Thus :r lls will put a listing of the current
directory in your text file.

Table 22.13.: read files and input
command action

r fname (read) file fname and paste contents
:rlemd execute cmd and paste its output

22.14. text buffers

There are 36 buffers in vi to store text. You can use them with the " character.

Table 22.14.: text buffers

command action

"add delete current line and put text in buffer a
"g7yy copy seven lines into buffer g
"ap paste from buffer a

22.15. multiple files

You can edit multiple files with vi. Here are some tips.

Table 22.15.: multiple files

command action
vi filel file2 file3 start editing three files
:args lists files and marks active file
n start editing the next file
e toggle with last edited file
rew rewind file pointer to first file

22.16. abbreviations

With :ab you can put abbreviations in vi. Use :una to undo the abbreviation.

201

22. Introduction to vi

Table 22.16.: abbreviations

command action
:ab str long string abbreviate str to be 'long string’
:una str un-abbreviate str

22.17. key mappings

Similarly to their abbreviations, you can use mappings with :map for command mode and
:map! for insert mode.

This example shows how to set the F6 function key to toggle between set number and set
nonumber. The <bar> separates the two commmands, set number! toggles the state and set
number? reports the current state.

:map <F6> :set number!<bar>set number?<CR>

22.18. setting options

Some options that you can set in vim.

:set number (also try :se nu)
:set nonumber

:syntax on

:syntax off

:set all (list all options)
:set tabstop=8

:set tx (CR/LF style endings)
:set notx

You can set these options (and much more) in ~/.vimrc for vim or in ~/.exrc for standard
Vi.

student@linux:~$ cat ~/.vimrc

set number

set tabstop=8

set textwidth=78

map <F6> :set number!<bar>set number?<CR>
student@linux:~$

22.19. practice: vi(m)

1. Start the vimtutor and do some or all of the exercises. You might need to run aptitude
install vimon xubuntu.

2. What 3 key sequence in command mode will duplicate the current line.

3. What 3 key sequence in command mode will switch two lines’ place (line five becomes
line six and line six becomes line five).

202

22.20. solution: vilm)

4. What 2 key sequence in command mode will switch a character’s place with the next
one.

5. vi can understand macro’s. A macro can be recorded with g followed by the name of the
macro. So ga will record the macro named a. Pressing g again will end the recording. You
can recall the macro with @ followed by the name of the macro. Try this example: i 1'Escape
Key' ga yyp 'Ctrl a’ g 5@a (Ctrl a will increase the number with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use the arrow
keys to select a Visual Block, you can copy this with y or delete it with d. Try pasting it.

7. What does dwwP do when you are at the beginning of a word in a sentence ?

22.20. solution: vi(m)

1. Start the vimtutor and do some or all of the exercises. You might need to run aptitude
install vimon xubuntu.

vimtutor

2. What 3 key sequence in command mode will duplicate the current line.

yyp

3. What 3 key sequence in command mode will switch two lines' place (line five becomes
line six and line six becomes line five).

ddp

4. What 2 key sequence in command mode will switch a character’s place with the next
one.

Xp

5. vi can understand macro’s. A macro can be recorded with g followed by the name of the
macro. So ga will record the macro named a. Pressing g again will end the recording. You
can recall the macro with @ followed by the name of the macro. Try this example: i 1'Escape
Key' ga yyp 'Ctrl a’ g 5@a (Ctrl a will increase the number with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use the arrow
keys to select a Visual Block, you can copy this with y or delete it with d. Try pasting it.

cp /etc/passwd ~
vi passwd
(press Ctrl-v)

7. What does dwwP do when you are at the beginning of a word in a sentence ?

dwwP can switch the current word with the next word.

203

Part VIl.

Scripting

205

23. introduction to scripting

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/, Bert Van Vreckem
https.;//github.com/bertwy/)

The goal of this chapter is to give you all the information in order to read, write and under-
stand small, long and complex shell scripts.

You should have read and understood part III shell expansionandpart IV pipes and
commands before starting this chapter.

23.1. introduction

When you open a terminal and type a command, you are using a shell, an interactive en-
vironment that interprets your commmands, executes them, and shows you the output the
command generates. Most Linux distributions have Bash (the “Bourne Again Shell”) as the
default, but there are others as well: the original “Bourne shell” (sh), the “Debian Amquist
Shell” (dash, a modern implementation of sh), the “Korn shell” (ksh), the “C shell” (csh), and
the “Z shell” (zsh), to name a few.

A sequence of commands can be saved in a file and executed as a single command. This
is called a script. Shell scripts are used to automate tasks, and are an essential tool for sys-
tem administrators and developers. Subsequently, this means that system administrators
or SysOps also need solid knowledge of scripting to understand how their servers and their
applications are started, updated, upgraded, patched, maintained, configured and removed,
and also to understand how a user environment is built.

Shells have also support for programming constructs (like loops, functions, variables, etc.) so
that you can write more complex scripts. This makes a scripting language basically as pow-
erful as a programming language. Scripting languages are often interpreted, rather than
compiled.

If you copy a script to one of the bin directories (e.g. /usr/local/bin), you can execute it
from the command line just like any other command. In fact, many UNIX/Linux commands
are essentially scripts. You can check this for yourself by executing the file commmand on
the executables in the /bin directory. For example:

student@linux:~$ file /usr/bin/x | awk '{ print($2, $3, $4) }' \
| sort | uniq -c | sort -nr

466 ELF 64-bit LSB

168 symbolic link to

74 POSIX shell script,

71 Perl script text

14 Python script, ASCII

10 setuid ELF 64-bit
7 setgid ELF 64-bit
6 Bourne-Again shell script,
2 Python script, Unicode
1 Python script, IS0-8859

207

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/bertvv/

23. introduction to scripting

We find POSIX (Bourne), Bash, Perl and Python scripts, as well as ELF binaries (compiled
programs). This shows that a significant portion of the commands in a typical Linux system
are actually scripts.

Bash scripting is a valuable skill for any Linux user, but these days, its applications are no
longer limited to Linux. Bash is also present on macOS (albeit an older version), and with the
advent of Windows Subsystem for Linux (WSL), Bash is now available for Windows users as
well. Moreover, Git Bash, a Bash shell for Windows, is also available.

23.2. hello world

Just like in every programming course, we start with a simple hello_world script. The fol-
lowing script will output Hello World.

echo Hello World

After creating thissimple scriptin nano, vi, or with echo, you'll have to chmod +x hello_world
to make it executable. And unless you add the scripts directory to your path, you'll have to
type the path to the script for the shell to be able to find it.

student@linux:~$ echo echo Hello World > hello_world
student@linux:~$ chmod +x hello_world
student@linux:~$./hello_world

Hello World
student@linux:~$

?

23.3. she-bang

Let's expand our example a little further by putting #! /bin/bash on the first line of the script.
The #! iscalled a she-bang (sometimes called sha-bang), where the she-bang is the first two
characters of the script.

Open the file with nano hello_world or vi hello_world and add the following line at the
top of the file.

echo Hello World

You can never be sure which (interactive) shell a user is running. A script that works flawlessly
in bash might notworkin ksh, csh,ordash. Toinstruct a shell to run your script with a specific
interpreter, you should start your script with a she-bang followed by the absolute path to the
executable of the interpreter.

This script will run in a bash shell.

echo -n hello
echo A bash subshell $(echo -n hello)

This script will be interpreted by Python:

print("Hello World!")

The following script will run in a Korn shell (unless /bin/kshis a hard link to /bin/bash). The
/etc/shells file contains a list of shells available on your system. Check it to see which ones
are available to you

208

w W N AW N o

23.4. comments

#!'/bin/ksh
echo -n hello
echo a Korn subshell $(echo -n hello)

If you're not sure in which bin directory the shell executable is located,you can use env. The
command env is normally used to print environment variables, but in the context of a script,
it is used to launch the correct interpreter.

#! /usr/bin/env bash
echo -n hello
echo A bash subshell $(echo -n hello)

This is particularly useful for macOS users: out-of-the-box, a macOS system has a very old
version of bash in /bin/bash. If you want to use a more recent version, you can install it with
Homebrew, that will put it in /usr/local/bin/bash. If you use #! /usr/bin/env bash in
your scripts, the newer version will be used.

23.4. comments

When writing Bash scripts, it is always a good practice to make your code clean and easily
understandable. Organizing your code in blocks, indenting, giving variables and functions
descriptive names are several ways to do this. Another way to improve the readability of your
code is by using comments. Acommentisa human-readable explanation or annotation that
is written in the shell script.

Let's expand our example a little further by adding comment lines.

#!/usr/bin/env bash

#

hello_world.sh -- My first script
#

echo Hello World

this is old way of calling for subshell with backtick
echo A bash subshell “echo -n hello”

this is more modern way of calling for subshell with dollar and brackets

s $0)
echo A bash subshell $(echo -n hello)

#NOTICE: backtick might not work in future versions of bash shell

23.5. extension

A general convention is to give files an extension that indicates the file type. On a Linux sys-
tem, this is not strictly necessary. Remember that you can always use the file command to
determine the type of a file by scanning its contents. The system will not care if you call your
script hello_world.sh or hello_world. However, it is a good practice to use an extension,
as it makes it easier to identify the type of file.

We recommend to always give your scripts the .sh extension, but to remove the extension
when you install it in a bin directory as a command.

209

https://brew.sh

[T N N N -

23. introduction to scripting

23.6. shell variables

Here is a simple example of a shell variable used inside a script.

echo "Hello ${USER}"

In Bash, you can access the value of a variable by prefixing the variable name with the $ sign.
The braces are not mandatory in this case, but they are a good practice to avoid ambiguity.
In some cases they are required, so it's best to be consistent in your coding style.

The variable ${USER} is a shell variable that is defined by the system when you log in.
student@linux:~$ chmod +x hello-user.sh

student@linux:~$./hello-user.sh
Hello student

23.7. variable assignment

Assigning a variable is done by using the = operator. The variable name must start with a
letter or an underscore, and can contain only letters, digits, or underscores. Remark that
spaces are not allowed around the = sign!

user:"TuX"
echo "Hello ${user}"

Because variable names are case-sensitive, this variable ${user} is different from ${USER}
in the previous example!

Tip: naming convention. You can use any name for a variable, but it is a good
practice to use all uppercase letters for environment variables (e.g. ${USER}) and
constants and all lowercase letters for local variables (e.g. ${user}). This is also
recommended by the Google Shell Style Guide. If a variable consists of multiple
words, use underscores to separate them (e.g. ${current_user}).

Running the script:

student@linux:~$ chmod +x hello-var.sh
student@linux:~$./hello-var.sh
Hello Tux

Scripts can contain variables, but since scripts are run in their own subshell, the variables do
not survive the end of the script.

student@linux:~$ echo $user
student@linux:~$./hello-var.sh
Hello Tux

student@linux:~$ echo $user

student@linux:~$

210

https://google.github.io/styleguide/shellguide.html#s7.2-variable-names

o v N~ WoN o

23.8. unbound variables

23.8. unbound variables

Remove thelineuser="Tux" from the script, or comment out the lineand run it again. What
doyou expect to happenifthe variable useris not assigned, but we tryto use it in the script?

student@linux:~$./hello-var.sh
Hello

Bash will not complain if you use a variable that is not assigned, but it will simply replace the
variable with an empty string. This can lead to unexpected results and is a common cause of
bugs that can be hard to find. However, you can change the behavior of the shell by starting
your scripts with the command set -0 nounset (or shorter: set -u). This will cause the
script to exit with an error if you try to use an unassigned variable.

Add the line to the script, right below the comment lines and try again!

set -0 nounset

echo "Hello ${user}"

Running the script:

student@linux:~$./hello-var.sh
./hello-var.sh: line 6: user: unbound variable

This is what you want to see. The script exits with an error, and you can see the line number
where the error occurred and which variable is unbound. Start all your scripts with set -o
nounset to prevent this kind of error!

23.9. sourcing a script
Luckily, you can force a script to run in the same shell; this is called sourcing a script.

student@linux:~$ source hello-var.sh
Hello Tux

student@linux:~$ echo $name

Tux

Instead of source, you can use the . (dot) command.

student@linux:~$. hello-var.sh
Hello Tux

student@linux:~$ echo $name

Tux

211

AwoN o

NwN o

23. introduction to scripting
23.10. quoting

Go back to hello-user.sh and replace the double quotes with single quotes:

#!/bin/bash
hello-user.sh -- example of a shell variable in a script
echo 'Hello ${USER}'

Run the script again:

student@linux:~$./hello-user.sh
Hello ${USER}

What happened? By using single quotes, we turned off the shell’s variable expansion. The
shell will not replace ${USER} with the value of the USER variable. This is why you should use
double quotes when you want to use a variable.

Using quotes is important. Most of the times, when you reference the value of a variable, you
should enclose it in double quotes. To illustrate this, write the following script:

#!/bin/bash

create-file.sh -- example of using quotes
file="my file.txt"

touch $file

What we expect is that the script will create a file called my file.txt. However, when we
run the script:

student@linux:~$./create-file.sh
student@linux:~$ 1s -1

total 4

-rwxr-xr-x 1 student student 88 Mar 6 16:20 create-file.sh
-rw-r--r-- 1 student student ®@ Mar 6 16:20 file.txt
-rw-r--r-- 1 student student @ Mar 6 16:20 my

So actually two files were created, one named my and the other file.txt. The reason hasto
do with the way Bash interprets a command and how it substitutes variables. The line

touch $file
is expanded to
touch my file.txt

without the quotes. The touch command now sees two arguments, my and file.txt, and
creates two files. To fix this, you should always use double quotes:

#!/bin/bash

create-file.sh -- example of using quotes
file="my file.txt"

touch "${file}"

Now the expansion of the variable is done within the quotes, and the touch command sees
only one argument.

student@linux:~$./create-file.sh
student@linux:~$ 1s -1

total 4
-rwxr-xr-x 1 student student 92 Mar 6 16:20 create-file.sh
-rw-r--r-- 1 student student ® Mar 6 16:20 'my file.txt'

212

N 0 0 AW o

~AwoN o

23.11. troubleshooting a script

23.11. troubleshooting a script

Another way to run a script in a separate shell is by typing bash with the name of the script
as a parameter. Expanding this to bash -x allows you to see the coommands that the shell is
executing (after shell expansion).

Try this with the create-file.sh script! The incorrect version without the quotes:

$ bash -x create-file.sh
+ file="my file.txt'
+ touch my file.txt

Notice the absence of the commented (#) line, and the replacement of the variable in the
argument touch.

After the fix, you get:

$ bash -x create-file.sh
+ file="my file.txt'
+ touch 'my file.txt'

Do you notice the difference?

In longer scripts, this setting produces a lot of output, which may be hard to read. You can
limit the output to a specific problematic part of your script by using set -x and set +x to
turn the debugging on and off.

file="my file.txt"

set -Xx
touch "${filel}"
set +X

23.12. Bash’s “strict mode”

Apart from the nounset shell option, there are two other options that are very useful for
debugging scripts: set -0 errexit (or set -e)and set -o pipefail. The first option
causes the script to exit with an error if any commmand fails. The second option gives better
error messages when a command in a pipeline fails.

Start all your scripts with the following lines to prevent errors and to make debugging eas-
ier:

set -0 nounset
set -0 errexit
set -o pipefail

This is called “strict mode” by some. You can write this shorter in one line as set -euo
pipefail, but thisis less readable

213

23. introduction to scripting

23.13. prevent setuid root spoofing

Some user may try to perform setuid based script root spoofing. Thisisa rare but possible
attack. To improve script security and to avoid interpreter spoofing, you need to add -- after
the #!/bin/bash, which disables further option processing so the shell will not accept any
options.

or

Any arguments after the —- are treated as filenames and arguments. An argument of - is
equivalent to —-.

23.14. practice: introduction to scripting

1. Write a Python “Hello World” script, give it a shebang and make it executable. Execute

aoh W o

214

it like you would a shell script and verify that this works.

. What would happen if you remove the shebang and try to execute the script again?

. Create a Bash script greeting.sh that says hello to the user (make use of the shell

variable with the current user’s login name), prints the current date and time, and prints
a quote, e.g.

student@linux:~$./greeting.sh
Hello student, today is:

Wed Mar 6 09:04:19 PM UTC 2024
Quote of the day:

/ Having nothing, nothing can he lose. \

| I
\ -- William Shakespeare, "Henry VI" /

\ A_A
\ (oo)_______
(N N/\

| ----w |

Ensure that you apply the shell settings to make your script easier to debug.

. Copy the script to /usr/local/bin without the extension and verify that you can run it

from any directory as a command.

. Take another look at the script hello-var.sh where we printed a variable that was not

assigned:

echo "Hello ${user}"

What happens if you assign the value Tux to the variable user on the interactive shell
and then run the script? What do we have to do to make sure the variable is available
in the script?

. What if we change the value of the variable user in the script? Will this change affect

the value of the variable in the interactive shell after the script is finished?

23.15. solution: introduction to scripting

23.15. solution: introduction to scripting

1.

1

2

© ® N8 0 0 DA W N o

S

N

Write a Python Hello World script, give it a shebang and make it executable.

print("Hello, World!")

$ chmod +x hello.py
$./hello.py
Hello, World!

. What would happen if you remove the shebang and try to execute the script again?

The script will be executed by the default interpreter, in this case, the Bash shell, which
will not understand the Python syntax.

$./hello.py
./hello.py: line 1: syntax error near unexpected token “"Hello world!"'
./hello.py: line 1: “print("Hello world!")"

. Create a Bash script greeting.sh that says hello to the user (make use of the shell

variable with the current user’s login name), prints the current date and time, and prints
a quote. Ensure that you apply the shell settings to make your script easier to debug.

set -0 nounset
set -0 errexit
set -0 pipefail

echo "Hello ${USER}, today is:"
date

echo "Quote of the day:"
fortune | cowsay

. Copy the script to /usr/local/bin without the extension and verify that you can run it

from any directory as a command.

student@linux:~$ sudo cp greeting.sh /usr/local/bin/greeting
student@linux:~$ greeting

Hello student, today is:

Wed Mar 6 09:17:00 PM UTC 2024

Quote of the day:

/ You plan things that you do not even \
| attempt because of your extreme [

\ caution. /
\ /_I\
N\ (oo)_______
(N \/\
[| --=-w |

[Il
student@linux:~$ cd /tmp
student@linux:/tmp$ greeting
Hello student, today is:

Wed Mar 6 09:17:08 PM UTC 2024
Quote of the day:

< You will be successful in love. >

215

23. introduction to scripting

\ A_A
\ (oo)_______
(N N/\

| -——-w |

5. Take another look at the script hello-var.sh where we printed a variable that was not

o N W o

216

assigned. What happens if you assign the value Tux to the variable user on the interac-
tive shell and then run the script? What do we have to do to make sure the variable is
available in the script?

student@linux:~$./hello-var.sh
Hello

student@linux:~$ user=Tux
student@linux:~$./hello-var.sh
Hello

student@linux:~$ export user
student@linux:~$./hello-var.sh
Hello Tux

. What if we change the value of the variable user in the script? Will this change affect

the value of the variable in the interactive shell after the script is finished?

We change the script to:

user="Linus"

echo "Hello ${user}"
And execute it:

student@linux:~$ export user=Tux
student@linux:~$ echo $user

Tux

student@linux:~$./hello-var.sh
Hello Linus

student@linux:~$ echo $user

Tux

The change in the script does not affect the value of the variable in the interactive shell
after the script is finished!

24. scripting loops

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

24.1. test[]

The test command can test whether something is true or false. Let's start by testing
whether 10 is greater than 55

[student@linux ~]$ test 10 -gt 55 ; echo $?
1
[student@linux ~1$

The test commmand returns1ifthe test fails. And asyou see in the next screenshot, test returns
0O when a test succeeds

[student@linux ~]$ test 56 -gt 55 ; echo $?
0
[student@linux ~1$

If you prefer true and false, then write the test like this.

[student@linux ~]$ test 56 -gt 55 & echo true || echo false
true
[student@linux ~]$ test 6 -gt 55 & echo true || echo false
false

The test command can also be written as square brackets, the screenshot below is identical
to the one above.

[student@linux ~]$ [56 -gt 55] & echo true || echo false
true

[student@linux ~]$ [6 -gt 55] & echo true || echo false
false

Below are some example tests. Take a look at man test to see more options for tests.

[-d foo] Does the directory foo exist ?

[-e bar] Does the file bar exist ?

['"/etc' = $PWD] Is the string /etc equal to the variable $PWD ?
[$1 == 'secret'] Is the first parameter different from secret ?
[55 -1t $bar 1] Is 55 less than the value of $bar ?

[$foo -ge 1000] Is the value of $foo greater or equal to 1000 ?
["abc" < $bar] Does abc sort before the value of $bar ?

[-f foo] Is foo a regular file ?

[-r bar] Is bar a readable file ?

[foo -nt bar] Is file foo newer than file bar ?

[-0 nounset] Is the shell option nounset set ?

217

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

24, scripting loops

Tests can be combined with logical AND and OR.

student@linux:~$ [66 -gt 55 -a 66 -1t 500] & echo true || echo false
true
student@linux:~$ [66 -gt 55 -a 660 -1t 500] & echo true || echo false
false
student@linux:~$ [66 -gt 55 -0 660 -1t 500] & echo true || echo false
true

24.2. if then else

The if then else construction is about choice. If a certain condition is met, then execute
something, else execute something else. The example below tests whether a file exists, and
if the file exists then a proper message is echoed.

#! /bin/bash

if [-f isit.txt]

then echo isit.txt exists!
else echo isit.txt not found!
fi

If we name the above script 'choice’, then it executes like this.

[student@linux scripts]$./choice
isit.txt not found!

[student@linux scripts]$ touch isit.txt
[student@linux scripts]$./choice
isit.txt exists!

[student@linux scripts]$

24.3. if then elif

You can nest a new if inside an else with elif. Thisis a simple example.

#!/bin/bash

count=42
if [$count -eq 42]
then

echo "42 is correct."
elif [$count -gt 42]

then

echo "Too much."
else

echo "Not enough."
fi

218

24.4. for loop

24.4. for loop

The example below shows the syntax of a classical for loop in bash.

for i in 1 2 4
do

echo $1i
done

An example of a for loop combined with an embedded shell.

#! /bin/ksh

for counter in “seq 1 20°

do
echo counting from 1 to 20, now at $counter
sleep 1

done

The same example as above can be written without the embedded shell using the bash
{from.. to} shorthand.

#!/bin/bash
for counter in {1..20}

do
echo counting from 1 to 20, now at $counter
sleep 1

done

This for loop uses file globbing (from the shell expansion). Putting the instruction on the
command line has identical functionality.

kahlan@solexpl1l$ 1s

count.ksh go.ksh

kahlan@solexpl1l$ for file in x.ksh ; do cp $file $file.backup ; done
kahlan@solexpl1l$ 1s

count.ksh count.ksh.backup go.ksh go.ksh.backup

24.5. while loop

Below a simple example of awhile loop.

i=100;

while [$i -ge 0] ;

do
echo Counting down, from 100 to @, now at $i;
let i--;

done

Endless loops can be made withwhile trueorwhile :,wherethe colonisthe equivalent
of no operationinthe Korn and bash shells.

219

24, scripting loops

#!/bin/ksh
endless loop
while :

do

echo hello
sleep 1

done

24.6. until loop

Below a simple example of an until loop.

let 1=100;

until [$1i -le 0] ;

do
echo Counting down, from 100 to 1, now at $i;
let i--;

done

24.7. practice: scripting tests and loops

o N wN

. Write a script that uses a for loop to count from 3to 7.
. Write a script that uses a for loop to count from 1to 17000

. Write a script that uses a while loop to count from 3to 7.

Write a script that uses an until loop to count down from 8 to 4.

. Write a script that counts the number of files ending in . txt in the current directory.

. Wrap an if statement around the script so it is also correct when there are zero files

endingin . txt.

24.8. solution: scripting tests and loops

1.

o v A W N o

2.

o v A W N o

220

Write a script that uses a for loop to count from 3 to 7.

for i in 3 456 7
do

echo "Counting from 3 to 7, now at ${i}"
done

Write a script that uses a for loop to count from 1to 17000.

for i in “seq 1 17000°
do

echo "Counting from 1 to 17000, now at ${i}"
done

Write a script that uses a while loop to count from 3 to 7.

© N o 0 A~ W N o ® N o 0N W N o -b ® N o A W N o

[0}

© ® 9 o0 0 N W N o

24.8. solution: scripting tests and loops

#!/bin/bash

i=3

while [$1 -le 7]

do
echo "Counting from 3 to 7, now at ${i}"
let i=i+1

done

. Write a script that uses an until loop to count down from 8 to 4.

#!/bin/bash

i=8
until [$1i -1t 4 1]
do
echo "Counting down from 8 to 4, now at ${i}"
let i=i-1
done

. Write a script that counts the number of files ending in . txt in the current directory.

#!/bin/bash

let 1=0
for file in *.txt
do
let i++
done

echo "There are ${i} files ending in .txt"

. Wrap an if statement around the script so it is also correct when there are zero files

ending in . txt.
#!/bin/bash
1s *.txt > /dev/null 2>&1

if [$? -ne 0]
then echo "There are 0 files ending in .txt"

else
let i=0
for file in *.txt
do
let i++
done

echo "There are ${i} files ending in .txt"
fi

221

25. scripting parameters

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

25.1. script parameters

A bash shell script can have parameters. The numbering you see in the script below contin-
ues if you have more parameters. You also have special parameters containing the number
of parameters, a string of all of them, and also the process id, and the last return code. The
man page of bash has a full list.

#!/bin/bash

echo The first argument is $1
echo The second argument is $2
echo The third argument is $3

echo \$ $$ PID of the script
echo \# $# count arguments

echo \? $? 1last return code
echo * $* all the arguments

Below is the output of the script above in action.

[student@linux scripts]$./pars one two three
The first argument is one

The second argument is two

The third argument is three

$ 5610 PID of the script

3 count arguments

? 0 last return code

* one two three all the arguments

Once more the same script, but with only two parameters.

[student@linux scripts]$./pars 1 2
The first argument is 1

The second argument is 2

The third argument is

$ 5612 PID of the script

2 count arguments

? 0 last return code

* 1 2 all the arguments
[student@linux scripts]$

Here is another example, where we use $0. The $0 parameter contains the name of the
script.

223

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

25, scripting parameters

student@linux~$ cat myname

echo this script is called $0
student@linux~$./myname

this script is called ./myname
student@linux~$ mv myname test42
student@linux~$./tests42

this script is called ./test42

25.2. shift through parameters
The shift statement can parse all parameters one by one. This is a sample script.

kahlan@solexpl1l$ cat shift.ksh
#! /bin/ksh

if ["$#" = "o"]

then
echo You have to give at least one parameter.
exit 1

fi

while (($#))
do
echo You gave me $1
shift
done

Below is some sample output of the script above.

kahlan@solexpl1l$./shift.ksh one

You gave me one

kahlan@solexp11$./shift.ksh one two three 1201 "33 42"
You gave me one

You gave me two

You gave me three

You gave me 1201

You gave me 33 42

kahlan@solexpl1l$./shift.ksh

You have to give at least one parameter.

25.3. runtime input
You can ask the user for input with the read commmand in a script.

#!/bin/bash
echo -n Enter a number:
read number

224

25.4. sourcing a config file

25.4. sourcing a config file

The source (as seen in the shell chapters) can be used to source a configuration file.

Below a sample configuration file for an application

[student@linux scripts]$ cat myApp.conf
The config file of myApp

Enter the path here
myAppPath=/var/myApp

Enter the number of quines here
quines=5

And here an application that uses this file.

[student@linux scripts]$ cat myApp.bash
#!/bin/bash

#

Welcome to the myApp application

#

./myApp.conf

echo There are $quines quines

The running application can use the values inside the sourced configuration file.

[student@linux scripts]$./myApp.bash
There are 5 quines
[student@linux scripts]$

25.5. get script options with getopts

The getopts function allows you to parse options given to a command. The following script

allows for any combination of the options a, fand z

kahlan@solexp11l$ cat options.ksh
#!/bin/ksh

while getopts ":afz
do
case $option in

a)

echo received -a

option;

12
f)
echo received -f

1
z)
echo received -z

1
*)
echo "invalid option -$OPTARG"

225

25, scripting parameters

’
esac
done

Thisis sample output from the script above. First we use correct options, then we enter twice
an invalid option.

kahlan@solexpl1l$./options.ksh
kahlan@solexpl1l$./options.ksh -af
received -a

received -f

kahlan@solexpl1$./options.ksh -zfg
received -z

received -f

invalid option -g

kahlan@solexp11$./options.ksh -a -b -z
received -a

invalid option -b

received -z

You can also check for options that need an argument, as this example shows.

kahlan@solexpl1l$ cat argoptions.ksh
#!/bin/ksh

while getopts ":af:z
do
case $option in

a)

echo received -a

option;

1
f)
echo received -f with $OPTARG

1
z)

echo received -z
"

echo "option -$0OPTARG needs an argument"

)
echo "invalid option -$OPTARG"

1

esac

done

This is sample output from the script above.

kahlan@solexp11$./argoptions.ksh -a -f hello -z
received -a

received -f with hello

received -z

kahlan@solexpl1l$./argoptions.ksh -zaf 42
received -z

received -a

received -f with 42

kahlan@solexpl1l$./argoptions.ksh -zf
received -z

option -f needs an argument

226

25.6. get shell options with shopt
25.6. get shell options with shopt

You can toggle the values of variables controlling optional shell behaviour with the shopt
built-in shell command. The example below first verifies whether the cdspell option is set; it
is not. The next shopt command sets the value, and the third shopt command verifies that
the option really is set. You can now use minor spelling mistakes in the cd command. The
man page of bash has a complete list of options.

?

student@linux:
1
student@linux:~$ shopt -s cdspell
student@linux:~$ shopt -q cdspell ; echo $?
0
studentalinux:
/etc

$ shopt -q cdspell ; echo $?

?

$ cd /Etc

25.7. practice: parameters and options

1. Write a script that receives four parameters, and outputs them in reverse order.

2. Write a script that receives two parameters (two filenames) and outputs whether those
files exist.

3. Write a script that asks for a filename. Verify existence of the file, then verify that you own
the file, and whether it is writable. If not, then make it writable.

4. Make a configuration file for the previous script. Put a logging switch in the config file,
logging means writing detailed output of everything the script does to a log file in /tmp.

25.8. solution: parameters and options

1. Write a script that receives four parameters, and outputs them in reverse order.
echo $4 $3 $2 $1

2. Write a script that receives two parameters (two filenames) and outputs whether those
files exist.

#! /bin/bash

if [-f $1 1

then echo $1 exists!
else echo $1 not found!
fi

if [-f $2]

then echo $2 exists!
else echo $2 not found!
fi

3. Write a script that asks for a filename. Verify existence of the file, then verify that you own
the file, and whether it is writable. If not, then make it writable.

4. Make a configuration file for the previous script. Put a logging switch in the config file,
logging means writing detailed output of everything the script does to a log file in /tmp.

227

26. more scripting

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

26.1. eval

eval reads arguments as input to the shell (the resulting commands are executed). This
allows using the value of a variable as a variable.

student@linux:~/test42$ answer=42
student@linux:~/test42$ word=answer
student@linux:~/test42$ eval x=\$$word ; echo $x
42

Both in bash and Korn the arguments can be quoted.

kahlan@solexpll$ answer=42

kahlan@solexpl1l$ word=answer
kahlan@solexp11l$ eval "y=\$$word" ; echo $y
42

Sometimes the eval is needed to have correct parsing of arguments. Consider this example
where the date command receives one parameter 1 week ago.

student@linux~$ date --date="1 week ago"
Thu Mar 8 21:36:25 CET 2012

When we set this command in a variable, then executing that variable fails unless we use
eval.

student@linux~$ lastweek='date --date="1 week ago
student@linux~$ $lastweek

date: extra operand “ago"'

Try “date --help' for more information.
student@linux~$ eval $lastweek

Thu Mar 8 21:36:39 CET 2012

26.2. (())

The (()) allows for evaluation of numerical expressions.

229

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

26. more scripting

studentalinux:
true
studentalinux:
false
studentalinux:
studentalinux:
true
student@linux:
true
studentalinux:
studentalinux:
false

26.3. let

echo false

~/test42$ ((42 > 33)) & echo true
~/test42$ ((42 > 1201)) & echo true echo false

~/test42$ var42=42

~/test42$ ((42 = var42)) & echo true |

echo false

~/test42$ ((42 $vars2)) & echo true echo false

~/test42$ vars2=33
~/test42$ ((42

var42)) & echo true echo false

The let built-in shell function instructs the shell to perform an evaluation of arithmetic ex-
pressions. It will return O unless the last arithmetic expression evaluates to O.

[student@linux
7
[student@linux
20
[student@linux
18
[student@linux
30

~]1$ let x="3 + 4" ; echo $x
~]1$ let x="10 + 100/10" ; echo $x
~]$ let x="10-2+100/10" ; echo $x

~1% let x="10*2+100/10" ; echo $x

The shell can also convert between different bases.

[student@linux
255
[student@linux
192
[student@linux
168
[student@linux
56
[student@linux
63
[student@linux
192

~]1$ let x="0xFF" ; echo $x
~1$ let x="0xC0" ; echo $x
~]$ let x="0xA8" ; echo $x
~1$ let x="8#70" ; echo $x
~1$ let x="8#77" ; echo $x
~]1$ let x="16#c0" ; echo $x

There is a difference between assigning a variable directly, or using let to evaluate the arith-
metic expressions (even if it is just assigning a value).

kahlan@solexpl
kahlangsolexpl
15 017 oxof
kahlan@solexpl
kahlan@solexpl
15 15 15

230

1$ dec=15 ; oct=017 ; hex=0x0f
1$ echo $dec $oct $hex

1$ let dec=15 ; let oct=017 ; let hex=0x0f
1$ echo $dec $oct $hex

26.4.

26.4. case

You can sometimes simplify nested if statements with a case construct.

[student@linux ~]$./help
What animal did you see ? lion
You better start running fast!
[student@linux ~]$./help
What animal did you see ? dog
Don't worry, give it a cookie.
[student@linux ~]$ cat help
#!/bin/bash
#
Wild Animals Helpdesk Advice
#
echo -n "What animal did you see ? "
read animal
case $animal in

"lion" | "tiger")

echo "You better start running fast!"

1
ucatu)

echo "Let that mouse go..."
1
"dog")
echo "Don't worry, give it a cookie."
1
"chicken" | "goose" | "duck")
echo "Eggs for breakfast!"
1
"liger")

echo "Approach and say 'Ah you big fluffy kitty...'."

1
"babelfish")
echo "Did it fall out your ear ?"

echo "You discovered an unknown animal, name it!"
1
esac
[student@linux ~1$

26.5. shell functions

Shell functions can be used to group commands in a logical way

kahlan@solexpl1$ cat funcs.ksh
#!/bin/ksh

function greetings {

echo Hello World!

echo and hello to $USER to!
}

case

23]

26. more scripting

echo We will now call a function
greetings
echo The end

This is sample output from this script with a function.

kahlan@solexp11l$./funcs.ksh
We will now call a function
Hello World!

and hello to kahlan to!

The end

A shell function can also receive parameters.

kahlan@solexpl1l$ cat addfunc.ksh
#!/bin/ksh

function plus {

let result="$1 + $2"
echo $1 + $2 = $result
}

plus 3 10
plus 20 13
plus 20 22
This script produces the following output.

kahlan@solexpl11$./addfunc.ksh

3+ 10 = 13
20 + 13 = 33
20 + 22 = 42

26.6. practice : more scripting

1. Write a script that asks for two numbers, and outputs the sum and product (as shown
here).

Enter a number: 5
Enter another number: 2

7
10

Sum:
Product:

NN
1

2. Improve the previous script to test that the numbers are between 1 and 100, exit with an
error if necessary.

3. Improve the previous script to congratulate the user if the sum equals the product.

4. Write a script with a case insensitive case statement, using the shopt nocasematch option.
The nocasematch option is reset to the value it had before the scripts started.

5. If time permits (or if you are waiting for other students to finish this practice), take a look
at Linux system scripts in /etc/init.d and /etc/rc.d and try to understand them. Where does
execution of a script start in /etc/init.d/samba ? There are also some hidden scripts in ~, we
will discuss them later.

232

26.7. solution : more scripting
26.7. solution : more scripting

1. Write a script that asks for two numbers, and outputs the sum and product (as shown
here).

Enter a number: 5
Enter another number: 2

]
~

Sum: 5 2
Product: 5 2

1l
=
S

+
X

#!/bin/bash

echo -n "Enter a number : "
read nl

echo -n "Enter another number : "
read n2

let sum="$n1+$n2"
let pro="$ni*$n2"

echo -e "Sum\t: $n1 + $n2 = $sum"
echo -e "Product\t: $n1 * $n2 = $pro"

2. Improve the previous script to test that the numbers are between 1 and 100, exit with an
error if necessary.

echo -n "Enter a number between 1 and 100 : "
read nl

if [$n1 -1t 1 -0 $n1 -gt 100]
then
echo Wrong number ...
exit 1
fi

3. Improve the previous script to congratulate the user if the sum equals the product.

if [$sum -eq $pro 1]
then echo Congratulations $sum = $pro
fi

4. Write a script with a case insensitive case statement, using the shopt nocasematch option.
The nocasematch option is reset to the value it had before the scripts started.

#!/bin/bash

#

Wild Animals Case Insensitive Helpdesk Advice
#

if shopt -q nocasematch; then
nocase=yes;

else
nocase=no;

233

26. more scripting

shopt -s nocasematch;
fi

echo -n "What animal did you see ? "
read animal

case $animal in
Il‘Lionll | "tiger")
echo "You better start running fast!"

.o
11

"cat")
echo "Let that mouse go..."
1
"dog")
echo "Don't worry, give it a cookie."
12
"chicken" | "goose" | "duck")
echo "Eggs for breakfast!"
1
"liger")

echo "Approach and say 'Ah you big fluffy kitty.'"

"babelfish")
echo "Did it fall out your ear ?"

echo "You discovered an unknown animal, name it!"

esac

if [nocase = yes] ; then
shopt -s nocasematch;
else
shopt -u nocasematch;
fi

5. If time permits (or if you are waiting for other students to finish this practice), take a look
at Linux system scripts in /etc/init.d and /etc/rc.d and try to understand them. Where does
execution of a script start in fetc/init.d/samba ? There are also some hidden scripts in ~, we
will discuss them later.

234

Part VIIl.

Local user management

235

27. introduction to users

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

This little chapter will teach you how to identify your user account on a Unix computer using
commands like who am 1, id, and more.

In a second part you will learn how to become another user with the su command.

And you will learn how to run a program as another user with sudo.

27.1. whoami
The whoami command tells you your username.

[student@linux ~]$ whoami
paul
[student@linux ~1$%

27.2. who

The who command will give you information about who is logged on the system.

[student@linux ~1]$ who

root pts/0 2014-10-10 23:07 (10.104.33.101)
paul pts/1 2014-10-10 23:30 (10.104.33.101)
laura pts/2 2014-10-10 23:34 (10.104.33.96)
tania pts/3 2014-10-10 23:39 (10.104.33.91)

[student@linux ~1$

27.3. who am i

Withwho am ithewho command will display only the line pointing to your current session.

[student@linux ~]$ who am i
paul ptS/l 2014-10-10 23:30 (10.104.33.101)
[student@linux ~1$%

237

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

27. introduction to users

27.4. w

The w command shows you who is logged on and what they are doing.

[student@linux ~1$ w
23:34:07 up 31 min, 2 users, load average: 0.00, 0.01, 0.02

USER TTY LOGIN® IDLE JCPU PCPU WHAT
root pts/0 23:07 15.00s 0.01s 0.01s top
paul pts/1 23:30 7.00s 0.00s 0.00s w

[student@linux ~1%

27.5. id

The id command will give you your user id, primary group id, and a list of the groups that
you belong to.

student@linux:~$ id
uid=1000(paul) gid=1000(paul) groups=1000(paul)

On RHEL/CentOS you will also get SELinux context information with this command.
[root@linux ~Ht id

uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r\
:unconfined_t:s0-s0:c0.c1023

27.6. su to another user

The su command allows a user to run a shell as another user.

laura@linux:~$ su tania
Password:
tania@linux:/home/laura$

27.7. su to root

Yes you can also su to become root, when you know the root password.

laura@linux:~$ su root
Password:
root@linux:/home/laura#

27.8. suU as root

You need to know the password of the user you want to substitute to, unless your are logged
inas root. The root user can become any existing user without knowing that user’s pass-
word.

root@linux:~# id

uid=0(root) gid=0(root) groups=0(root)
root@linux:~# su - valentina
valentina@linux:~$

238

279. su - $username

27.9. su - $username

By default, the su command maintains the same shell environment. To become another
user and also get the target user’s environment, issue the su - command followed by the
target username.

root@linux:~# su laura
laura@linux:/root$ exit
exit

rootalinux:~# su - laura
laura@linux:~$ pwd
/home/laura

27.10. su -

When no username is provided to su or su -,the command will assume root is the target.

tania@linux:~$ su -
Password:
root@linux:~#

27.11. run a program as another user

The sudo program allows a user to start a program with the credentials of another user. Be-
fore this works, the system administrator has to set up the /etc/sudoers file. This can be
useful to delegate administrative tasks to another user (without giving the root password).

The screenshot below shows the usage of sudo. User paul received the right to run useradd
with the credentials of root. This allows paul to create new users on the system without
becoming root and without knowing the root password.

First the commmand fails for paul.

student@linux:~$ /usr/sbin/useradd -m valentina
useradd: Permission denied.
useradd: cannot lock /etc/passwd; try again later.

But with sudo it works.

student@linux:~$ sudo /usr/sbin/useradd -m valentina
[sudo] password for paul:
student@linux:~$

27.12. visudo

Check the man page of visudo before playing with the /etc/sudoers file. Editing the su-
doers is out of scope for this fundamentals book.

student@linux:~$ apropos visudo
visudo (8) - edit the sudoers file
student@linux:~$

239

27. introduction to users

27.13. sudo su -

On some Linux systems like Ubuntu and Xubuntu, the root user does not have a password
set. This means that it is not possible to login as root (extra security). To perform tasks as
root, the first user is given all sudo rights via the /etc/sudoers. In fact all users that are
members of the admin group can use sudo to run all coommands as root.

root@linux:~# grep admin /etc/sudoers
Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

The end result of this is that the user can type sudo su - and become root without having to
enter the root password. The sudo command does require you to enter your own password.
Thus the password prompt in the screenshot below is for sudo, not for su.

student@linux:~$ sudo su -
Password:
rootalinux:~#

27.14. sudo logging

Using sudo without authorization will result in a severe warning:

student@linux:~$ sudo su -

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for paul:
paul is not in the sudoers file. This incident will be reported.
student@linux:~$

The root user can see this in the /var/log/secure on Red Hat and in /var/log/auth.log
on Debian).

root@linux:~# tail /var/log/secure | grep sudo | tr -s
Apr 13 16:03:42 rhel65 sudo: paul : user NOT in sudoers ; TTY=pts/0 ; PwWD=\
/home/paul ; USER=root ; COMMAND=/bin/su -

root@linux:~#

27.15. practice: introduction to users

1. Run a command that displays only your currently logged on user name.
2. Display a list of all logged on users.

3. Display a list of all logged on users including the commmand they are running at this very
moment.

4. Display your user name and your unique user identification (userid).

240

27.16. solution: introduction to users

5. Use su to switch to another user account (unless you are root, you will need the password
of the other account). And get back to the previous account.

6. Now use su - to switch to another user and notice the difference.
Note that su - gets you into the home directory of Tania.

7. Try to create a new user account (when using your normal user account). this should fail.
(Details on adding user accounts are explained in the next chapter.)

8. Now try the same, but with sudo before your command.

27.16. solution: introduction to users

1. Run a command that displays only your currently logged on user name.

lauraglinux:~$ whoami
laura

laura@linux:~$ echo $USER
laura

2. Display a list of all logged on users.

laura@linux:~$ who
laura pts/0 2014-10-13 07:22 (10.104.33.101)
laura@linux:~$

3. Display a list of all logged on users including the commmand they are running at this very
moment.

laura@linux:~$ w
@7:47:02 up 16 min, 2 users, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 10.104.33.101 07:30 6.00s 0.04s 0.00s w
root pts/1 10.104.33.101 07:46 6.00s 0.01s 0.00s sleep 42

laura@linux:~$
4. Display your user name and your unique user identification (userid).

lauraglinux:~$ id
uid=1005(laura) gid=1007(laura) groups=1007(laura)
laura@linux:~$

5. Use su to switch to another user account (unless you are root, you will need the password
of the other account). And get back to the previous account.

laura@linux:~$ su tania

Password:

tania@linux:/home/laura$ id

uid=1006(tania) gid=1008(tania) groups=1008(tania)
taniaglinux:/home/laura$ exit

laura@linux:~$

6. Now use su - to switch to another user and notice the difference.

241

27. introduction to users

laura@linux:~$ su - tania
Password:

tania@linux:~$ pwd
/home/tania
tania@linux:~$ logout
laura@linux:~$

Note that su - gets you into the home directory of Tania.

7. Try to create a new user account (when using your normal user account). this should fail.
(Details on adding user accounts are explained in the next chapter.)

laura@linux:~$ useradd valentina

-su: useradd: command not found

lauraglinux:~$ /usr/sbin/useradd valentina
useradd: Permission denied.

useradd: cannot lock /etc/passwd; try again later.

It is possible that useradd is located in /sbin/useradd on your computer.

8. Now try the same, but with sudo before your command.

laura@linux:~$ sudo /usr/sbin/useradd valentina

[sudo] password for laura:

laura is not in the sudoers file. This incident will be reported.
laura@linux:~$

Notice that laura has no permission to use the sudo on this system.

242

28. user management

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

This chapter will teach you how to use useradd, usermod and userdel to create, modify and
remove user accounts.

You will need root access on a Linux computer to complete this chapter.

28.1. user management

User management on Linux can be done in three complementary ways. You can use the
graphical tools provided by your distribution. These tools have a look and feel that depends
on the distribution. If you are a novice Linux user on your home system, then use the graph-
ical tool that is provided by your distribution. This will make sure that you do not run into
problems.

Another option is to use command line tools like useradd, usermod, gpasswd, passwd and
others. Server administrators are likely to use these tools, since they are familiar and very
similar across many different distributions. This chapter will focus on these command line
tools.

Athird and rather extremist way isto edit the local configuration files directly using
vi (or vipw/vigr). Do not attempt this as a novice on production systems!

28.2. fetc/passwd

The local user database on Linux (and on most Unixes) is /etc/passwd.

[root@linux ~H tail /etc/passwd

inge:x:518:524:art dealer:/home/inge:/bin/ksh
ann:x:519:525:flute player:/home/ann:/bin/bash
frederik:x:520:526:rubius poet:/home/frederik:/bin/bash
steven:x:521:527:roman emperor:/home/steven:/bin/bash
pascale:x:522:528:artist:/home/pascale:/bin/ksh
geert:x:524:530:kernel developer:/home/geert:/bin/bash
wim:x:525:531:master damuti:/home/wim:/bin/bash
sandra:x:526:532:radish stresser:/home/sandra:/bin/bash
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

As you can seeg, this file contains seven columns separated by a colon. The columns contain
the username, an x, the user id, the primary group id, a description, the name of the home
directory, and the login shell.

More information can be found by typing man 5 passwd.

[root@linux ~H man 5 passwd

243

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

28. user management

28.3. root

The root user also called the superuser is the most powerful account on your Linux system.
This user can do almost anything, including the creation of other users. The root user always
has userid O (regardless of the name of the account).

[root@linux ~H head -1 /etc/passwd
root:x:0:0:root:/root:/bin/bash

28.4. useradd

You can add users with the useradd command. The example below shows how to add a
user named yanina (last parameter) and at the same time forcing the creation of the home
directory (-m), setting the name of the home directory (-d), and setting a description (-c).

[root@linux ~Ht useradd -m -d /home/yanina -c "yanina wickmayer" yanina
[root@linux ~Ht tail -1 /etc/passwd
yanina:x:529:529:yanina wickmayer:/home/yanina:/bin/bash

The user named yanina received userid 529 and primary group id 529.

28.5. /etc/default/useradd

Both Red Hat Enterprise Linux and Debian/Ubuntu have a file called /etc/default/useradd
that contains some default user options. Besides using cat to display this file, you can also
use useradd -D.

[rootRHEL4 ~Ht useradd -D
GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash
SKEL=/etc/skel

28.6. userdel

You can delete the user yanina with userdel. The -r option of userdel will also remove the
home directory.

[root@linux ~Ht userdel -r yanina

244

28.7. usermod

28.7. usermod

You can modify the properties of a user with the usermod command. This example uses
usermod to change the description of the user harry.

[root@RHEL4 ~Ht tail -1 /etc/passwd
harry:x:516:520:harry potter:/home/harry:/bin/bash
[root@RHEL4 ~Ht usermod -c 'wizard' harry
[root@RHEL4 ~Ht tail -1 /etc/passwd
harry:x:516:520:wizard:/home/harry:/bin/bash

28.8. creating home directories

The easiest way to create a home directory is to supply the -m option with useradd (it is likely
set as a default option on Linux).

Aless easy way is to create a home directory manually with mkdir which also requires setting
the owner and the permissions on the directory with chmod and chown (both commands are
discussed in detail in another chapter).

[rootlinux ~H mkdir /home/laura

[root@linux ~Ht chown laura:laura /home/laura
[root@linux ~H chmod 700 /home/laura

[root@linux ~H 1s -1d /home/laura/

drwx------ 2 laura laura 4096 Jun 24 15:17 /home/laura/

28.9. /etc/skel/

When using useradd the -m option, the /etc/skel/ directory is copied to the newly created
home directory. The /etc/skel/ directory contains some (usually hidden) files that contain
profile settings and default values for applications. In thisway /etc/skel/ serves asa default
home directory and as a default user profile.

[root@linux ~Ht 1s -la /etc/skel/
total 48

drwxr-xr-x 2 root root 4096 Apr 1 00:11 .

drwxr-xr-x 97 root root 12288 Jun 24 15:36 ..

-rw-r--r-- 1 root root 24 Jul 12 2006 .bash_logout
-rw-r--r-- 1 root root 176 Jul 12 2006 .bash_profile
-rw-r--r-- 1 root root 124 Jul 12 2006 .bashrc

28.10. deleting home directories

The -r option of userdel will make sure that the home directory is deleted together with the
user account.

[rootlinux ~Ht 1s -1d /home/wim/

drwx------ 2 wim wim 4096 Jun 24 15:19 /home/wim/
[root@linux ~Ht userdel -r wim

[root@linux ~Ht 1s -1d /home/wim/

1s: /home/wim/: No such file or directory

245

28. user management
28.11. login shell

The /etc/passwd file specifiesthe login shell for the user. In the screenshot below you can
see that user annelies will log in with the /bin/bash shell, and user laura with the /bin/ksh
shell.

[root@linux ~Ht tail -2 /etc/passwd
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

You can use the usermod command to change the shell for a user.

[root@linux ~Ht usermod -s /bin/bash laura
[root@linux ~Ht tail -1 /etc/passwd
laura:x:528:534:art dealer:/home/laura:/bin/bash

28.12. chsh

Users can change their login shell with the chsh command. First, user harry obtains a list
of available shells (he could also have done a cat /etc/shells)and then changes his login
shell to the Korn shell (/bin/ksh). At the next login, harry will default into ksh instead of
bash.

[laura@linux ~1$ chsh -1
/bin/sh

/bin/bash
/sbin/nologin
/usr/bin/sh
/usr/bin/bash
/usr/sbin/nologin
/bin/ksh
/bin/tcsh
/bin/csh
[lauraglinux ~1$%

Note that the -1 option does not exist on Debian and that the above screenshot assumes
that ksh and csh shells are installed.

The screenshot below shows how laura can change her default shell (active on next login).

[laura@linux ~]$ chsh -s /bin/ksh
Changing shell for laura.
Password:

Shell changed.

28.13. practice: user management

1. Create a user account named serena, including a home directory and a description (or
comment) that reads Serena Williams. Do all this in one single command

2. Create a user named venus, including home directory, bash shell, a description that reads
Venus Williams all in one single command.

3. Verify that both users have correct entriesin /etc/passwd, /etc/shadowand /etc/group.

246

28.14. solution: user management

4. Verify that their home directory was created.
5. Create a user named einstime with /bin/date as his default logon shell.

6. What happens when you log on with the einstime user ? Can you think of a useful real
world example for changing a user’s login shell to an application ?

7. Create a file named welcome. txt and make sure every new user will see this file in their
home directory.

8. Verify this setup by creating (and deleting) a test user account.

9. Change the default login shell for the serena user to /bin/bash. Verify before and after
you make this change.

28.14. solution: user management

1. Create a user account named serena, including a home directory and a description (or
comment) that reads Serena Williams. Do all this in one single command

root@linux:~# useradd -m -c 'Serena Williams' serena

2. Create a user named venus, including home directory, bash shell, a description that reads
Venus Williams all in one single command.

root@linux:~# useradd -m -c "Venus Williams" -s /bin/bash venus
3. Verify that both users have correct entriesin /etc/passwd, /etc/shadowand /etc/group.

rootlinux:~# tail -2 /etc/passwd
serena:x:1008:1010:Serena Williams:/home/serena:/bin/sh
venus:x:1009:1011:Venus Williams:/home/venus:/bin/bash
root@linux:~# tail -2 /etc/shadow
serena:!:16358:0:99999:7 :::

venus:!:16358:0:99999:7 :::

root@linux:~# tail -2 /etc/group

serena:x:1010:

venus:x:1011:

4. Verify that their home directory was created.

root@linux:~# 1ls -lrt /home | tail -2

drwxr-xr-x 2 serena serena 4096 Oct 15 10:50 serena
drwxr-xr-x 2 venus venus 4096 Oct 15 10:59 venus
root@linux:~#

5. Create a user named einstime with /bin/date as his default logon shell.
root@linux:~# useradd -s /bin/date einstime

Or even better:

root@linux:~# useradd -s $(which date) einstime

6. What happens when you log on with the einstime user ? Can you think of a useful real

world example for changing a user’'s login shell to an application ?

247

28. user management

root@linux:
Wed Oct 15
root@linux:

~# su - einstime
11:05:56 UTC 2014 # You get the output of the date command
~#

It can be useful when users need to access only one application on the server. Just logging in
opens the application for them, and closing the application automatically logs them out.

7. Create a file named welcome. txt and make sure every new user will see this file in their
home directory.

root@linux:

~#t echo Hello > /etc/skel/welcome.txt

8. Verify this setup by creating (and deleting) a test user account.

rootalinux:
root@linux:
total 4

-rW-r--r--
root@linux:
rootalinux:

~# useradd -m test
~# 1s -1 /home/test

1 test test 6 Oct 15 11:16 welcome.txt
~# userdel -r test
~#

9. Change the default login shell for the serena user to /bin/bash. Verify before and after
you make this change.

rootalinux:

~#f grep serena /etc/passwd

serena:x:1008:1010:Serena Williams:/home/serena:/bin/sh

rootalinux:
rootalinux:

~# usermod -s /bin/bash serena
~# grep serena /etc/passwd

serena:x:1008:1010:Serena Williams:/home/serena:/bin/bash
root@linux:~t

248

29. user passwords

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

This chapter will tell you more about passwords for local users.

Three methods for setting passwords are explained; using the passwd command, using
openssel passwd, and using the crypt function in a C program.

The chapter will also discuss password settings and disabling, suspending or locking ac-
counts.

29.1. passwd

Passwords of users can be set with the passwd command. Users will have to provide their
old password before twice entering the new one.

[tania@linux ~]$ passwd

Changing password for user tania.

Changing password for tania.

(current) UNIX password:

New password:

BAD PASSWORD: The password is shorter than 8 characters
New password:

BAD PASSWORD: The password is a palindrome

New password:

BAD PASSWORD: The password is too similar to the old one
passwd: Have exhausted maximum number of retries for service

As you can see, the passwd tool will do some basic verification to prevent users from using
too simple passwords. The root user does not have to follow these rules (there will be a warn-
ing though). The root user also does not have to provide the old password before entering
the new password twice.

root@linux:~# passwd tania

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

29.2. shadow file

User passwords are encrypted and kept in /etc/shadow. The /etc/shadow file is read only
and can only be read by root. We will see in the file permissions section how it is possible for
users to change their password. For now, you will have to know that users can change their
password with the /usr/bin/passwd command.

249

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

29. user passwords

[root@linux ~Ht tail -4 /etc/shadow
paul:6ikp2Xta5BT.TmLl.p$2TZjNNOYNNQKpwL IqoGIbVsZG5/Fti8ovBRd.VzRbiDS17TEQ\
IaSMH.TeBKnTS/SjlMruw8qffCOINORW.BTW1:16338:0:99999:7 :::
tania:$6$82/zovxj$9qvoqT8i9KIrmN.k4EQWAF5ryz5yzNwEVYjAa9L5XVXQu . z4D1pvMREH\
eQpQzvRnqFdKkVj17H5ST.c79HDZw0:16356:0:99999:7 :::
laura:6g1DuTY5e$/NYYWLXFHgZFWeoujaXSMcR.Mz.1GOXtcxFocFVINDbISnbTPhWFXTKWG\
SyYh1WCv6763Wq54.w24Yr3uAZBOm/:16356:0:99999:7 :::
valentina:6jrza6PvVI$1uQgqR6ENIMZB6MKI3LXRB4CnFko6LRhbh.v4iqUkOMVreuillv7\
GXHOUDSKA@N55ZRNhGHa6T20uFnVno/001:16356:0:99999:7 :::

[root@linux ~Ht

The /etc/shadow file contains nine colon separated columns. The nine fields contain (from
left to right) the user name, the encrypted password (note that only inge and laura have an
encrypted password), the day the password was last changed (day 1is January 1,1970), num-
ber of days the password must be left unchanged, password expiry day, warning number of
days before password expiry, number of days after expiry before disabling the account, and
the day the account was disabled (again, since 1970). The last field has no meaning yet.

All the passwords in the screenshot above are hashes of hunter?2.

29.3. encryption with passwd

Passwords are stored in an encrypted format. This encryption is done by the crypt func-
tion. The easiest (and recommended) way to add a user with a password to the system is to
add the user with the useradd -m user command, and then set the user’s password with
passwd.

[root@RHEL4 ~Ht useradd -m xavier

[root@RHEL4 ~Ht passwd xavier

Changing password for user xavier.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.
[roOt@QRHEL4 ~Hit

29.4. encryption with openssl

Another way to create users with a password is to use the -p option of useradd, but that
option requires an encrypted password. You can generate this encrypted password with the
openssl passwd command.

The openssl passwd command will generate several distinct hashes for the same password,
for this it uses a salt

student@linux:~$ openssl passwd hunter2

86jCcUNINGDFpY

student@linux:~$ openssl passwd hunter2
Yj7mD090ANvQ6

student@linux:~$ openssl passwd hunter2
YgDcJeGoDbzKA

student@linux:~$

This salt can be chosen and is visible as the first two characters of the hash.

250

29.5. encryption with crypt

student@linux:~$ openssl passwd -salt 42 hunter2

427ZrbtP1Ze8G.

student@linux:~$ openssl passwd -salt 42 hunter2
427rbtP1Ze8G.

student@linux:~$ openssl passwd -salt 42 hunter2
427ZrbtP1Ze8G.

student@linux:~$

This example shows how to create a user with password.
root@linux:~# useradd -m -p $(openssl passwd hunter2) mohamed

Note that this command puts the password in your command history!

29.5. encryption with crypt

A third option is to create your own C program using the crypt function, and compile this
into a command.

student@linux:~$ cat MyCrypt.c
#include <stdio.h>
#tdefine _ USE_XOPEN
#include <unistd.h>

int main(int argc, char*x argv)
{
if(argc=3)
{
printf("%s\n", crypt(argv[1],argv[2]));

else

{
}

return 0;

}

printf("Usage: MyCrypt $password $salt\n");

This little program can be compiled with gcc like this.
student@linux:~$ gcc MyCrypt.c -o MyCrypt -lcrypt

To use it, we need to give two parameters to MyCrypt. The first is the unencrypted password,
the second is the salt. The salt is used to perturb the encryption algorithm in one of 4096
different ways. This variation prevents two users with the same password from having the
same entry in /etc/shadow.

student@linux:~$./MyCrypt hunter2 42
427ZrbtP1Ze8G.
student@linux:~$./MyCrypt hunter2 33
33d6taYSiEUXI

Did you notice that the first two characters of the password are the salt?

The standard output of the crypt function is using the DES algorithm which is old and can
be cracked in minutes. A better method is to use md5 passwords which can be recognized
by a salt starting with 1.

251

29. user passwords

student@linux:~$./MyCrypt hunter2 '$1$42'
$1$42$716Y3xT5282XmZrtDOF9f0
student@linux:~$./MyCrypt hunter2 '$6$42'

$6$42$0qFFAVNI3gTSYGOYIOTZWX9cpyQzwIop7HwpG1LLESNBiMr4w60vLX1KDa. /UpwXfrFkii ...

The md5 salt can be up to eight characterslong. The saltis displayedin /etc/shadow between
the second and third $, so never use the password as the salt!

student@linux:~$./MyCrypt hunter2 '1hunter2’
1hunter2$YVxrxDmidq7Xf8GdtegMm2.

29.6. /etc/login.defs

The /etc/login.defs file contains some default settings for user passwords like password
aging and length settings. (You will also find the numerical limits of user ids and group ids
and whether or not a home directory should be created by default).

root@linux:~# grep "“PASS /etc/login.defs
PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

PASS_MIN_LEN 5

PASS_WARN_AGE 7

Debian also has this file.

root@linux:~# grep PASS /etc/login.defs

PASS_MAX_DAYS Maximum number of days a password may be used.

PASS_MIN_DAYS Minimum number of days allowed between password changes.
PASS_WARN_AGE Number of days warning given before a password expires.
PASS_MAX_DAYS 99999

PASS_MIN _DAYS @

PASS_WARN_AGE 7

#PASS_CHANGE_TRIES

#PASS_ALWAYS_WARN

#PASS_MIN_LEN

#PASS_MAX_LEN

NO_PASSWORD_CONSOLE

root@linux:~#

29.7. chage

The chage command can be used to set an expiration date for a user account (-E), set a
minimum (-m) and maximum (-M) password age, a password expiration date, and set the
number of warning days before the password expiration date. Much of this functionality is
also available from the passwd command. The -1 option of chage will list these settings for
a user.

root@linux:~# chage -1 paul

Last password change : Mar 27, 2014
Password expires : never
Password inactive ! never
Account expires ! never
Minimum number of days between password change : 0

252

29.8. disabling a password

Maximum number of days between password change : 99999
Number of days of warning before password expires 7
root@linux:~#

29.8. disabling a password

Passwords in /etc/shadow cannot begin with an exclamation mark. When the second field
in /etc/passwd starts with an exclamation mark, then the password can not be used.

Using this feature is often called locking, disabling, or suspending a user account. Besides
vi (or vipw) you can also accomplish this with usermod.

The first command in the next screenshot will show the hashed password of laura in
/etc/shadow. The next command disables the password of laura, making it impossible for
Laura to authenticate using this password.

rootalinux:~# grep laura /etc/shadow | cut -c1-70
laura:$6$3Yj41Zqp$stwwWACp30tE1IR2aZuE87j . nbW. puDkNUYVk7mCHfCVMa3CoDUJIV
root@linux:~# usermod -L laura

As you can see below, the password hash is simply preceded with an exclamation mark.

root@linux:~# grep laura /etc/shadow | cut -c1-70
laura: !'$6$3Yj4IZqp$stwwWACp30tELR2aZuUES7 . nbW. puDKNUYVK7mCHfCVMa3CoDUJ
root@linux:~#

The root user (and users with sudo rights on su) still will be able to su into the laura account
(because the password is not needed here). Also note that laura will still be able to login if
she has set up passwordless ssh!

root@linux:~# su - laura
lauraalinux:~$

You can unlock the account again with usermod -U.

root@linux:~# usermod -U laura
root@linux:~# grep laura /etc/shadow | cut -c1-70
laura:$6$3Yj41Zqp$stwwWACp30tE1IR2aZuE87j . nbW. puDkNUYVk7mCHfCVMa3CoDUJIV

Watch out for tiny differences in the command line options of passwd, usermod, and useradd
on different Linux distributions. Verify the local files when using features like "disabling,
suspending, or locking" on user accounts and their passwords.

29.9. editing local files

If you still want to manually edit the /etc/passwd or /etc/shadow, after knowing these com-
mands for password management, then use vipw instead of vi(m) directly. The vipw tool will
do proper locking of the file.

[root@linux ~Ht vipw /etc/passwd
vipw: the password file is busy (/etc/ptmp present)

253

29. user passwords

29.10. practice: user passwords

1. Set the password for serena to hunter?2.

2. Also set a password for venus and then lock the venus user account with usermod. Verify
the locking in /etc/shadow before and after you lock it.

3. Use passwd -d to disable the serena password. Verify the serena line in /etc/shadow
before and after disabling.

4. What is the difference between locking a user account and disabling a user account’s
password like we just did with usermod -L and passwd -d?

5. Try changing the password of serena to serena as serena.
6. Make sure serena has to change her password in 10 days.
7. Make sure every new user needs to change their password every 10 days.

8. Take a backup as root of /etc/shadow. Use vi to copy an encrypted hunter2 hash from
venus to serena. Can serena now log on with hunter2 as a password ?

9. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

10. Use chsh to list all shells (only works on RHEL/CentOS/Fedora), and compare to cat
/etc/shells.

1. Which useradd option allows you to name a home directory ?

12. How can you see whether the password of user serena is locked or unlocked ? Give a
solution with grep and a solution with passwd.

29.11. solution: user passwords

1. Set the password for serena to hunter?2.

root@linux:~# passwd serena

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

2. Also set a password for venus and then lock the venus user account with usermod. Verify
the locking in /etc/shadow before and after you lock it.

root@linux:~# passwd venus

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

rootalinux:~# grep venus /etc/shadow | cut -c1-70

venus: 6gswzXICW$uSnKFV1kFKZmTPaMVS4AVNA/KO270xN@v5LHAV9edagTyXrjueM/
root@linux:~# usermod -L venus

root@linux:~# grep venus /etc/shadow | cut -c1-70

venus: ! 6gswzXICW$uSNKFV1kFKZmTPaMVS4AVNA/KO270xNOv5LHAV9eddgTyXrjUeM

Note that usermod -L precedes the password hash with an exclamation mark (!).

3. Use passwd -d to disable the serena password. Verify the serena line in /etc/shadow
before and after disabling.

254

29.11. solution: user passwords

root@linux:~# grep serena /etc/shadow | cut -c1-70
serena:6Es/omrPE$F2Ypu8kpLrfKdwov/UIwA5jrYyBD2nwZ/dt.i/IypRgiPZSdB/B
root@linux:~# passwd -d serena

passwd: password expiry information changed.

root@linux:~# grep serena /etc/shadow

serena::16358:0:99999:7 :::

root@linux:~#

4. What is the difference between locking a user account and disabling a user account’s
password like we just did with usermod -L and passwd -d?

Locking will prevent the user from logging on to the system with his password by putting a
I'in front of the password in /etc/shadow.

Disabling with passwd will erase the password from /etc/shadow.

5. Try changing the password of serena to serena as serena.

log on as serena, then execute: passwd serena... it should fail!
6. Make sure serena has to change her password in 10 days.

chage -M 10 serena

7. Make sure every new user needs to change their password every 10 days.
vi /etc/login.defs (and change PASS_MAX_DAYS to 10)

8. Take a backup as root of /etc/shadow. Use vi to copy an encrypted hunter2 hash from
venus to serena. Can serena now log on with hunter2 as a password ?

Yes.
9. Why use vipw instead of vi ? What could be the problem when using vi or vim ?
vipw will give a warning when someone else is already using that file (with vipw).

10. Use chsh to list all shells (only works on RHEL/CentOS/Fedora), and compare to cat
/etc/shells.

chsh -1
cat /etc/shells

1. Which useradd option allows you to name a home directory ?
-d

12. How can you see whether the password of user serena is locked or unlocked ? Give a
solution with grep and a solution with passwd.

grep serena /etc/shadow

passwd -S serena

255

30. User profiles

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

Logged on users have a number of preset (and customized) aliases, variables, and functions,
but where do they come from ? The shell uses a number of startup files that are executed
(or rather sourced) whenever the shell is invoked. What follows is an overview of startup
scripts.

30.1. system profile

Both the bash and the ksh shell will verify the existence of /etc/profile and source it if it
exists.

When reading this script, you will notice (both on Debian and on Red Hat Enterprise Linux)
that it builds the PATH environment variable (among others). The script might also change
the PS1variable, set the HOSTNAME and execute even more scripts like /etc/inputrc

This screenshot uses grep to show PATH manipulation in /etc/profile on Debian.

rootlinux:~# grep PATH /etc/profile
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
PATH="/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games"

export PATH

root@linux:~#

This screenshot uses grep to show PATH manipulationin /etc/profile on RHEL7/CentOS7.

[root@linux ~Ht grep PATH /etc/profile
case ":${PATH}:" in
PATH=$PATH: $1
PATH=$1:$PATH
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL
[root@linux ~Ht

The root user can use this script to set aliases, functions, and variables for every user on the
system.

30.2. ~/.bash_profile

When this file exists in the home directory, then bash will source it. On Debian Linux 5/6/7
this file does not exist by default.

RHEL7/CentOS7 uses a small ~/.bash_profile where it checks for the existence of
~/ .bashrc and then sources it. It also adds $HOME/bin to the $PATH variable.

257

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

30. User profiles

[root@linux ~Ht cat /home/paul/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH
[root@linux ~Ht

30.3. ~/.bash_login

When .bash_profile does not exist, then bash will check for ~/.bash_login and source
it.

Neither Debian nor Red Hat have this file by default.

30.4. ~/.profile

When neither~/.bash_profileand~/.bash_loginexist, then bash will verify the existence
of ~/.profile and execute it. This file does not exist by default on Red Hat.

On Debian this script can execute ~/.bashrc and will add $HOME/bin to the $PATH vari-
able.

rootlinux:~# tail -11 /home/paul/.profile
if [-n "$BASH_VERSION"]; then

include .bashrc if it exists

if [-f "$HOME/.bashrc" 1; then

. "$HOME/.bashrc"

fi
fi
set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then

PATH="$HOME/bin: $PATH"
fi

RHEL/CentOS does not have this file by default.

30.5. ~/.bashrc

The ~/.bashrc script is often sourced by other scripts. Let us take a look at what it does by
default.

Red Hat uses a very simple ~/.bashrc, checking for /etc/bashrc and sourcing it. It also
leaves room for custom aliases and functions

258

30.6. ~/bash_logout

[root@linux ~Ht cat /home/paul/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
. /etc/bashrc
fi
Uncomment the following 1line if vyou don't 1like systemctl's auto-
paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

On Debian this script is quite a bit longer and configures $PS1, some history variables and a
number af active and inactive aliases.

root@linux:~# wc -1 /home/paul/.bashrc
110 /home/paul/.bashrc

30.6. ~/.bash_logout

When exiting bash, it can execute ~/.bash_logout.

Debian use this opportunity to clear the console screen.

serena@linux:~$ cat .bash_logout
~/.bash_logout: executed by bash(1) when login shell exits.

when leaving the console clear the screen to increase privacy

if ["$SHLVL" = 1]; then
[-x /usr/bin/clear_console] & /usr/bin/clear_console -q
fi

Red Hat Enterprise Linux 5 will simple call the /usr/bin/clear command in this script.

[serena@linux ~]$ cat .bash_logout
~/.bash_logout

/usr/bin/clear
Red Hat Enterprise Linux 6 and 7 create this file, but leave it empty (except fora comment).

student@linux:~$ cat .bash_logout
~/.bash_logout

30.7. Debian overview

Below is a table overview of when Debian is running any of these bash startup scripts.

259

30. User profiles

Table 30.1.: Debian User Environment

script su su - ssh gdm
~.[bashrc no yes yes yes
~/profile no yes yes yes
fetc/profile no yes yes yes
/etc/bash.bashrc yes no no yes

30.8. RHELS overview

Below is a table overview of when Red Hat Enterprise Linux 5 is running any of these bash
startup scripts.

Table 30.2.: Red Hat User Environment

script su Su - ssh gdm
~./bashrc yes yes yes yes
~/bash_profile no yes yes yes
fetc/profile no yes yes yes
fetc/bashrc yes yes yes yes

30.9. practice: user profiles

1. Make a list of all the profile files on your system.
2. Read the contents of each of these, often they source extra scripts.
3. Put a unique variable, alias and function in each of those files.

4. Try several different ways to obtain a shell (su, su -, ssh, tmux, gnome-terminal, Ctrl-alt-
F1, ..) and verify which of your custom variables, aliases and function are present in your
environment.

5. Do you also know the order in which they are executed?

6. When an application depends on a setting in $HOME/profile, does it matter whether
$HOME/bash_profile exists or not ?

30.10. solution: user profiles

1. Make a list of all the profile files on your system.
1s -a ~ ; 1s -1 /etc/pro* /etc/bashx*

2. Read the contents of each of these, often they source extra scripts.
3. Put a unique variable, alias and function in each of those files.

4. Try several different ways to obtain a shell (su, su -, ssh, tmux, gnome-terminal, Ctrl-alt-
F1, ...) and verify which of your custom variables, aliases and function are present in your
environment.

5. Do you also know the order in which they are executed?

260

30.10. solution: user profiles
same name aliases, functions and variables will overwrite each other

6. When an application depends on a setting in $HOME/profile, does it matter whether
$HOME/bash_profile exists or not ?

Yes it does matter. (man bash /INVOCATION)

261

31. groups

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

Users can be listed in groups. Groups allow you to set permissions on the group level instead
of having to set permissions for every individual user.

Every Unix or Linux distribution will have a graphical tool to manage groups. Novice users
are advised to use this graphical tool. More experienced users can use command line tools
to manage users, but be careful: Some distributions do not allow the mixed use of GUIl and
CLI tools to manage groups (YaST in Novell Suse). Senior administrators can edit the relevant
files directly with vi or vigr.

31.1. groupadd

Groups can be created with the groupadd command. The example below shows the creation
of five (empty) groups.

root@linux:
rootalinux:
rootalinux:
rootalinux:
rootalinux:

~H
~#
~#
~#
~#

groupadd
groupadd
groupadd
groupadd
groupadd

31.2. group file

tennis
football
snooker
formulal
salsa

Users can be a member of several groups. Group membership is defined by the /etc/group

file

rootalinux:~# tail -5 /etc/group

tennis:x:1006:

football:x:1007:
snooker:x:1008:

formulal:x:1009:
salsa:x:1010:

rootalinux:

~#

The first field is the group’s name. The second field is the group’s (encrypted) password (can
be empty). The third field is the group identification or GID. The fourth field is the list of
members, these groups have no members.

263

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

31. groups

31.3. groups
A user can type the groups command to see a list of groups where the user belongs to.

[harry@linux ~]$ groups
harry sports
[harry@linux ~1%

31.4. usermod

Group membership can be modified with the useradd or usermod command.

root@linux:~# usermod -a -G tennis inge
root@linux:~# usermod -a -G tennis katrien
rootalinux:~# usermod -a -G salsa katrien
rootalinux:~# usermod -a -G snooker sandra
rootalinux:~# usermod -a -G formulal annelies
root@linux:~# tail -5 /etc/group
tennis:x:1006:1inge,katrien
football:x:1007:

snooker:x:1008:sandra
formulal:x:1009:annelies
salsa:x:1010:katrien

rootalinux:~#

Be careful when using usermod to add users to groups. By default, the usermod command
will remove the user from every group of which he is a member if the group is not listed in
the command! Using the -a (append) switch prevents this behaviour.

31.5. groupmod
You can change the group name with the groupmod command.

root@linux:~# groupmod -n darts snooker
rootlinux:~# tail -5 /etc/group
tennis:x:1006:1inge,katrien
football:x:1007:
formulal:x:1009:annelies
salsa:x:1010:katrien
darts:x:1008:sandra

31.6. groupdel

You can permanently remove a group with the groupdel command.

root@linux:~# groupdel tennis
root@linux:~#

264

31.7. gpasswd

31.7. gpasswd

You can delegate control of group membership to another user with the gpasswd command.
In the example below we delegate permissions to add and remove group members to serena
for the sports group. Then we su to serena and add harry to the sports group.

[root@linux ~Ht gpasswd -A serena sports
[root@linux ~H su - serena

[serena@linux ~]$ id harry

uid=516(harry) gid=520(harry) groups=520(harry)
[serena@linux ~]$ gpasswd -a harry sports
Adding user harry to group sports

[serena@linux ~]$ id harry

uid=516(harry) gid=520(harry) groups=520(harry),522(sports)
[serena@linux ~]$ tail -1 /etc/group
sports:x:522:serena,venus,harry

[serenadlinux ~1$%

Group administrators do not have to be a member of the group. They can remove them-
selves from a group, but this does not influence their ability to add or remove members.

[serena@linux ~]$ gpasswd -d serena sports
Removing user serena from group sports
[serena@linux ~]$ exit

Information about group administrators is kept in the /etc/gshadow file.

[root@linux ~Ht tail -1 /etc/gshadow
sports:!:serena:venus,harry
[root@linux ~Ht

Toremove all group administrators from a group, use the gpasswd command to set an empty
administrators list.

[root@linux ~Ht gpasswd -A "" sports

31.8. newgrp

You can start a child shell with a new temporary primary group using the newgrp com-
mand.

root@linux:~# mkdir prigroup
root@linux:~# cd prigroup/
root@linux:~/prigroup# touch standard.txt
root@linux:~/prigroup# 1ls -1

total 0

-rw-r--r--. 1 root root @ Apr 13 17:49 standard.txt
root@linux:~/prigroup# echo $SHLVL

1

root@linux:~/prigroup# newgrp tennis
root@linux:~/prigroup# echo $SHLVL

2

root@linux:~/prigroup# touch newgrp.txt
root@linux:~/prigroup# 1s -1

265

31. groups

total 0

-rw-r--r--. 1 root tennis @ Apr 13 17:49 newgrp.txt
-rw-r--r--. 1 root root O Apr 13 17:49 standard.txt
rootlinux:~/prigroup# exit

exit

root@linux:~/prigroup#

31.9. vigr

Similar to vipw, the vigr commmand can be used to manually edit the /etc/group file, since
it will do proper locking of the file. Only experienced senior administrators should use vi or
vigr to manage groups.

31.10. practice: groups

1. Create the groups tennis, football and sports.

2. In one command, make venus a member of tennis and sports
3. Rename the football group to foot.

4. Use vi to add serena to the tennis group.

5. Use the id command to verify that serena is a member of tennis.

6. Make someone responsible for managing group membership of foot and sports. Test that
it works

31.11. solution: groups

1. Create the groups tennis, football and sports.

groupadd tennis ; groupadd football ; groupadd sports

2. In one command, make venus a member of tennis and sports.
usermod -a -G tennis,sports venus

3. Rename the football group to foot.

groupmod -n foot football

4. Use vi to add serena to the tennis group.

vi /etc/group

5. Use the id command to verify that serena is a member of tennis.
id (and after logoff logon serena should be member)

6. Make someone responsible for managing group membership of foot and sports. Test that
it works

266

31.11. solution: groups

gpasswd -A (to make manager)

gpasswd -a (to add member)

267

Part IX.

File security

269

32. standard file permissions

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/, Bert Van Vreckem,
https//github.com/bertw/)

This chapter contains details about basic file security through file ownership and file permis-
sions.

32.1. file ownership

32.1.1. user owner and group owner

The users and groups of a system can be locally managed in /etc/passwd and /etc/group,
or they can be in a NIS, LDAP, or Samba domain. These users and groups can own files.
Actually, every file has a user owner and a group owner, as can be seen in the following
example.

student@linux:~/owners$ 1ls -1lh

total 636K

-rw-r--r--. 1 student snooker 1.1K Apr 8 18:47 data.odt
-rw-r--r--. 1 student student 626K Apr 8 18:46 filel
-rw-r--r--. 1 student tennis 185 Apr 8 18:46 file2
-rw-rw-r--. 1 root root 0 Apr 8 18:47 stuff.txt

User student owns three files: filel has student as user owner and has the group stu-
dent as group owner, data.odt is group owned by the group snooker, file2 by the group
tennis.

The last file is called stuff.txt and is owned by the root user and the root group.

32.1.2. chgrp

You can change the group owner of a file using the chgrp command. You must have root
privileges to do this.

root@linux:/home/student/owners# 1s -1 file2
-rw-r--r--. 1 root tennis 185 Apr 8 18:46 file2
root@linux:/home/student/owners# chgrp snooker file2
rootalinux:/home/student/owners# 1s -1 file2
-rw-r--r--. 1 root snooker 185 Apr 8 18:46 file2
root@linux:/home/student/owners#

271

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/bertvv/

32. standard file permissions

32.1.3. chown

The user owner of a file can be changed with chown command. You must have root privi-
leges to do this. In the following example, the user owner of file2 is changed from root to
student.

root@linux:/home/student# 1s -1 FileForStudent

-rw-r--r-- 1 root student @ 2008-08-06 14:11 FileForStudent
rootalinux:/home/student# chown student FileForStudent
root@linux:/home/student# 1s -1 FileForStudent

-rw-r--r-- 1 student student 0 2008-08-06 14:11 FileForStudent

You can also use chown user:group to change both the user owner and the group owner.

root@linux:/home/student# 1s -1 FileForStudent
-rw-r--r-- 1 student student 0 2008-08-06 14:11 FileForStudent
root@linux:/home/student# chown root:project42 FileForStudent
root@linux:/home/student# 1s -1 FileForStudent
-rw-r--r-- 1 root project42 0 2008-08-06 14:11 FileForStudent

32.2. list of special files

When you use 1ls -1, for each file you can see ten characters before the user and group
owner. The first character tells us the type of file. Regular files get a -, directories get a d,
symbolic links are shown with an 1, pipes get a p, character devices a ¢, block devices a b,
and sockets an s.

first character file type

normal file
directory
symbolic link
named pipe
block device
character device
socket

nw N oTT —~Q |

Below an example of a character device (the console) and a block device (the hard disk).

student@linux:~$ 1s -1 /dev/console /dev/sda
crw--w---- 1 root tty 5, 1 Mar 8 08:32 /dev/console
brw-rw---- 1 root disk 8, @ Mar 8 08:32 /dev/sda

And here you can see a directory, a regular file and a symbolic link.

student@linux:~$ 1s -1d /etc /etc/hosts /etc/os-release

drwxr-xr-x 81 root root 4096 Mar 8 08:32 /etc

-rw-r--r-- 1 root root 186 Feb 26 14:58 /etc/hosts

lrwxrwxrwx 1 root root 21 Dec 9 21:08 /etc/os-release -> ../usr/lib/os-
release

272

32.3. permissions

32.3. permissions

32.3.1. rwx

The nine characters following the file type denote the permissions in three triplets. A permis-
sion can be r for read access, w for write access, and x for execute. You need the r permission
to list (Is) the contents of a directory. You need the x permission to enter (cd) a directory. You
need the w permission to create files in or remove files from a directory.

permission on a file on a directory
read read file contents (cat) read directory contents (1s)
write change file contents create/delete files (touch,rm)
execute execute the file enter the directory (cd)

32.3.2. three sets of rwx

We already know that the output of 1s -1 starts with ten characters for each file. This exam-
ple shows a regular file (because the first characterisa -).

student@linux:~/test$ 1s -1 proc&2.sh
-rwxr-xr-- 1 student proj 984 Feb 6 12:01 proc42.sh

Below is a table describing the function of all ten characters.

position characters function

1 - file type
2-4 rwx permissions for the user owner
5-7 r-x permissions for the group owner
8-10 r-- permissions for others

When you are the user owner of a file, then the user owner permissions apply to you. The
rest of the permissions have no influence on your access to the file.

When you belong to the group that is the group owner of a file, then the group owner per-
missions apply to you. The rest of the permissions have no influence on your access to the
file.

When you are not the user owner of a file and you do not belong to the group owner, then
the others permissions apply to you. The rest of the permissions have no influence on your
access to the file.

32.3.3. permission examples

Some example combinations on files and directories are seen in this example. The name of
the file explains the permissions.

student@linux:~/perms$ 1s -1h

total 12K

drwxr-xr-x 2 student student 4.0K 2007-02-07 22:26 AllEnter_UserCreateDelete
-rwxrwxrwx 1 student student 0 2007-02-07 22:21 EveryoneFullControl.txt
-r--r----- 1 student student 0 2007-02-07 22:21 OnlyOwnersRead.txt
-rwxrwx--- 1 student student 0 2007-02-07 22:21 OwnersAll_RestNothing.txt
dr-xr-x--- 2 student student 4.0K 2007-02-07 22:25 UserAndGroupEnter
dr-x------ 2 student student 4.0K 2007-02-07 22:25 OnlyUserEnter

273

32. standard file permissions

To summarise, the first rwx triplet represents the permissions for the user owner. The second
triplet correspondsto the group owner; it specifies permissions for all members of that group.
The third triplet defines permissions for all other users that are not the user owner and are
not a member of the group owner. The root user ignores all restrictions and can do anything

with any file.

32.3.4. setting permissions with symbolic notation

Permissions can be changed with chmod MODE FILE You need to be the owner of the
file to do this. The first example gives (+) the user owner (u) execute (x) permissions.

student@linux:~/perms$ 1s -1 permissions.txt

-rw-r--r-- 1 student student 0 2007-02-07 22:34 permissions.

student@linux:~/perms$ chmod u+x permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rwxr--r-- 1 student student @ 2007-02-07 22:34 permissions.

This example removes (-) the group owner’s (g) read (r) permission.

student@linux:~/perms$ chmod g-r permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rwx---r-- 1 student student @ 2007-02-07 22:34 permissions.

This example removes (-) the other’s (0) read (r) permission.

student@linux:~/perms$ chmod o-r permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-TWX-—----- 1 student student @ 2007-02-07 22:34 permissions.

This example gives (+) all (a) of them the write (w) permission.

student@linux:~/perms$ chmod a+w permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rwx-w--w- 1 student student @ 2007-02-07 22:34 permissions.

You don't even have to type the a.

student@linux:~/perms$ chmod +x permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rwx-wx-wx 1 student student 0 2007-02-07 22:34 permissions.

You can also set explicit permissions with =.

student@linux:~/perms$ chmod u=rw permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rw--wx-wx 1 student student 0 2007-02-07 22:34 permissions.

txt

txt

txt

txt

txt

txt

txt

Feel free to make any kind of combination, separating them with a comma. Remark that

spaces are not allowed!

student@linux:~/perms$ chmod u=rw,g=rw,o=r permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rw-rw-r-- 1 student student 0 2007-02-07 22:34 permissions.

274

txt

32.3. permissions

Even fishy combinations are accepted by chmod.

student@linux:~/perms$ chmod u=rwx,ug+rw,o=r permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt
-rwxrw-r-- 1 student student 0 2007-02-07 22:34 permissions.txt

Summarized, in order to change permissions with chmod using symbolic notation:

- first specify who the permissions are for: u for the user owner, g for the group owner, o
for others, and a for all. a is the default and can be omitted.

- then specify the operation: + to add permissions, - to remove permissions, and = to set
permissions.

- finally specify the permission(s): r for read, w for write, and x for execute.

- multiple operations can be combined with a comma (no spaces!)

32.3.5. setting permissions with octal notation

Most Unix administrators will use the “old school” octal system to talk about and set permis-
sions. Consider the triplet to be a binary number with O indicating the permission is not set
and 1 indicating the permission is set. You then have 23 =38 possible combinations, hence
the name octal. You can then convert the binary number to an octal number, equating r to
4,wto2,and xto 1.

permission binary octal

-—— 000 0]
--X 001 1
-w- 010 2
-wX on 3
r-- 100 4
r-x 101 5
rw- 10 6
rwXx m 7

Since we have three triplets, we can use three octal digits to represent the permissions. This
makes 777 equal to rwxrwxrwx and by the same logic, 654 mean rw-r-xr--. The chmod
command will accept these numbers.

student@linux:~/perms$ chmod 777 permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rwxrwxrwx 1 student student 0 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod 664 permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rw-rw-r-- 1 student student @ 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod 750 permissions.txt
student@linux:~/perms$ 1s -1 permissions.txt

-rwxr-x--- 1 student student @ 2007-02-07 22:34 permissions.txt

Remark that in practice, some combinations will never occur:

- The permissions of a user will never be smaller than the permissions of the group owner
or others. Consequently, the digits will always be in descending order.

- Setting the write or execute permission without read access is useless. Consequently,
you will never use 1, 2, or 3 in an octal permission code

275

32. standard file permissions

- A directory will always have the read and execute permission set or unset together. It
is useless to allow a user to read the directory contents, but not let them cd into that
directory. Allowing cd without read access is also useless. The permission code for a
directory will therefore always be odd.

Here's a little tip: you can print the permissions of a file in either octal or symbolic notation
with the stat command (check the man page of stat to see how this works).

[student@linux ~]$ stat -c '%A %a' /etc/passwd
-rw-r--r-- 644

[student@linux ~1$ stat -c '%A %a' /etc/shadow
—————————— 0

[student@linux ~]$ stat -c '%A %a' /bin/1ls
-rwxr-xr-x 755

32.3.6. umask

When creating a file or directory, a set of default permissions are applied. These default
permissions are determined by the umask value. The umask specifies permissions that you
do not want set on by default. You can display the umask with the umask command.

[student@linux ~1$ umask

0002

[student@linux ~]$ touch test

[student@linux ~]$ 1s -1 test

-rw-rw-r-- 1 student student @ Jul 24 06:03 test
[student@linux ~1$%

Asyou can also see, thefile is also not executable by default. This is a general security feature
among Unixes; newly created files are never executable by default. You have to explicitly do
a chmod +x to make a file executable. This also means that the 1 bit in the umask has no
meaning. A umask value of 0022 has the same effect as 0033.

In practice, you will only use umask values:

- O0: don't take away any permissions
- 2: take away write permissions
- 7: take away all permissions

You can set the umask value to a new value with the umask command. The umask value is
a four-digit octal number. The first digit is for special permissions (and is always zero), the
second for the user permissions (is in practice always O, since there is no use in taking away
the user’s permissions), the third for the group owner (sometimes O, but usually 2 or 7), and
the last for others (usually 2 or 7, 0 is very uncommon and can be considered to be a security
risk).

The umask value is subtracted from 777 to get the default permissions and in the case of a
file, the execute bit is removed.

[student@linux ~1$ umask 0002

[student@linux ~]$ touch file0002

[student@linux ~1]$ mkdir dir0002

[student@linux ~]$ 1s -1d %0002

drwxrwxr-x. 2 student student 6 Mar 8 10:48 dir0002
-rw-rw-r--. 1 student student @ Mar 8 10:47 file0002
[student@linux ~]$ umask 0027

[student@linux ~]$ touch file0027

[student@linux ~1$ mkdir diree27

276

[student@linux ~1]$ 1s -1d *0027
drwxr-x---. 2 student student 6 Mar
-rw-r----- . 1 student student 0 Mar
[student@linux ~1$ umask 0077
[student@linux ~1]$ touch file@077
[student@linux ~1$ mkdir diree77
[student@linux ~1$ 1s -1d %0077

. 2 student student 6 Mar
. 1 student student 0 Mar

32.3.7. mkdir -m

32.4. practice: standard file permissions

148 dir0027
148 file0027

:51 diroe77
:51 file0077

When creating directories with mkdir you can use the -moption to set the mode. Thisexample

explains.

student@linux~$ mkdir -m 700 MyDir
student@linux~$ mkdir -m 777 Public

student@linux~$ 1s -dl1 MyDir/ Public/

drwx------ 2 student student 4096 2011-10-16 19:16 MyDir/
drwxrwxrwx 2 student student 4096 2011-10-16 19:16 Public/

32.3.8. cp -p

To preserve permissions and time stamps from source files, use cp -p.

student@linux:~/perms$ cp filex cp

student@linux:~/perms$ cp -p file* cpp

student@linux:~/perms$ 11 *

-rwx------ 1 student student @ 2008-08-25 13:26 file33
-rwxr-x--- 1 student student @ 2008-08-25 13:26 file42
cp:

total 0

-rwWX------ 1 student student 0 2008-08-25 13:34 file33

-rwxr-x--- 1 student student 0 2008-08-25 13:34 file42

cpp:
total 0

—-rwx------ 1 student student 0 2008-08-25 13:26 file33
-rwxr-x--- 1 student student 0 2008-08-25 13:26 file42

32.4. practice: standard file permissions

1. As normal user, create a directory ~/permissions. Create a file owned by yourself in

there.

o N wWN

. Copy a file owned by root from /etc/ to your permissions dir, who owns this file now ?
. As root, create a file in the users ~/permissions directory.

As normal user, look at who owns this file created by root.

. Change the ownership of all files in ~/permissions to yourself.

. Delete the file created by root. Is this possible?

277

32. standard file permissions

7. With chmod, is 770 the same as rwxrwx —-"2

8. With chmod, is 664 the same as r-xr-xr--2

9. With chmod, is 400 the same as r-------- ?
10. With chmod, is 734 the same as rwxr-xr--2

11. Display the umask value in octal and in symbolic form.

12. Set the umask to 0077, but use the symbolic format to set it. Verify that this works.

13. Create a file as root, give only read to others. Can a normal user read this file? Test
writing to this file with vi or nano.

14. Create a file as a normal user, take away all permissions for the group owner and others.
Can you still read the file? Can root read the file? Can root write to the file?

15. Create a directory that belongs to group users, where every member of that group can
read and write to files, and create files. Make sure that people can only delete their own
files.

32.5. solution: standard file permissions

1. As normal user, create a directory ~/permissions. Create a file owned by yourself in
there.

[student@linux ~]$ mkdir permissions

[student@linux ~]$ touch permissions/myfile.txt
[student@linux ~]$ 1s -1 permissions/

total @

-rw-r--r--. 1 student student @ Mar 8 10:59 myfile.txt

2. Copy a file owned by root from /etc/ to your permissions dir, who owns this file now ?

[student@linux ~]$ 1s -1 /etc/hosts

-rw-r--r--. 1 root root 174 Feb 26 15:05 /etc/hosts
[student@linux ~]$ cp /etc/hosts ~/permissions/

[student@linux ~]$ 1s -1 permissions/hosts

-rw-r--r--. 1 student student 174 Mar 8 11:00 permissions/hosts

The copy is owned by you.
3. Asroot, create a file in the users ~/permissions directory.

[student@linux ~]$ sudo touch permissions/rootfile.txt
[sudo] password for student:

4. As normal user, look at who owns this file created by root.

[student@linux ~]$ 1s -1 permissions/*.txt
-rw-r--r--. 1 student student @ Mar 8 10:59 permissions/myfile.txt
-rw-r--r--. 1 root root ® Mar 8 11:02 permissions/rootfile.txt

The file created by root is owned by root.
5. Change the ownership of all files in ~/permissions to yourself.

[student@linux ~]$ chown student ~/permissions/*
chown: changing ownership of '/home/student/permissions/rootfile.txt': Operation not p

You cannot become owner of the file that belongs to root. Root must change the own-
ership.

6. Delete the file created by root. Is this possible?

278

10.

.

12.

13.

14.

32.5. solution: standard file permissions

[student@linux ~]$ rm ~/permissions/rootfile.txt

rm: remove write-protected regular empty file '/home/student/permissions/rootfile.txt'’

[student@linux ~]$ 1s -1 permissions/*.txt
-rw-r--r--. 1 student student @ Mar 8 10:59 permissions/myfile.txt

You can delete the file since you have write permission on the directory!

. With chmod, is 770 the same as rwxrwx -———"2

yes

. With chmod, is 664 the same as r-xr-xr--2

no, rw-rw-r-- is 664 and r-xr-xr-- is 774

. With chmod, is 400 the sameasr-------- ?

yes

With chmod, is 734 the same as rwxr-xr--7

NO, rWXr-XTr -- is 754 and rwx-wxr -- is 734
Display the umask in octal and in symbolic form.
umask and umask -S

Set the umask to 0077, but use the symbolic format to set it. Verify that this works.

[student@linux ~]$ umask -S u=rwx,go=
usrwx,g=,o0=

[student@linux ~1$ umask

0077

Create a file as root, give only read to others. Can a normal user read this file? Test
writing to this file with vi or nano.

[student@linux ~]$ sudo vi permissions/rootfile.txt

[student@linux ~]$ sudo chmod 644 permissions/rootfile.txt
[student@linux ~]$ 1s -1 permissions/*.txt

-rw-r--r--. 1 student student 0 Mar 8 10:59 permissions/myfile.txt

-rw-r--r--. 1 root root 6 Mar 8 13:53 permissions/rootfile.txt
[student@linux ~]$ cat permissions/rootfile.txt
hello

[student@linux ~]$ echo " world" >> permissions/rootfile.txt
-bash: permissions/rootfile.txt: Permission denied

Yes, a normal user can read the file, but not write to it.

Create a file as a normal user, take away all permissions for the group and others. Can
you still read the file? Can root read the file? Can root write to the file?

[student@linux ~]$ vi permissions/privatefile.txt
(editing the file)

[student@linux ~]$ cat permissions/privatefile.txt

hello

[student@linux ~]$ chmod 600 permissions/privatefile.txt

[student@linux ~]$ 1s -1 permissions/privatefile.txt

-rw------- . 1 student student @ Mar 8 16:06 permissions/privatefile.txt
[student@linux ~]$ cat permissions/privatefile.txt
hello

Of course, the owner can still read (and write to) the file.

279

32. standard file permissions

15.

280

[student@linux ~]$ sudo vi permissions/privatefile.txt
[sudo] password for student:

(editing the file)
[student@linux ~]$ cat permissions/privatefile.txt
hello world

Root can read and write to the file. In fact, root ignores all file permissions and can do
anything with any file.

Create a directory shared/ that belongs to group users, where every member of that
group can read and write to files, and create files.

[student@linux ~1$ mkdir shared

[student@linux ~]$ sudo chgrp users shared
[student@linux ~]$ chmod 775 shared/
[student@linux ~]$ ls -1d shared/

drwxrwxr-x. 2 student users 6 Mar 8 18:26 shared/

33. advanced file permissions

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

33.1. sticky bit on directory

You cansetthe sticky bit on adirectory to prevent users from removing files that they do
not own as a user owner. The sticky bit is displayed at the same location as the x permission
for others. The sticky bit is represented by a t (meaning x is also there) or a T (when there is
no x for others).

root@linux:~# mkdir /project55

root@linux:~# 1s -1d /project55

drwxr-xr-x 2 root root 4096 Feb 7 17:38 /project55
root@linux:~# chmod +t /project55/

rootlinux:~# 1s -1d /project55

drwxr-xr-t 2 root root 4096 Feb 7 17:38 /project55
rootlinux:~#

The sticky bit can also be set with octal permissions, it is binary 1 in the first of four
triplets.

root@linux:~# chmod 1775 /project55/

rootlinux:~# 1s -1d /project55

drwxrwxr-t 2 root root 4096 Feb 7 17:38 /project55
rootlinux:~#

You will typically find the sticky bit onthe /tmp directory.

root@linux:~# 1s -1d /tmp
drwxrwxrwt 6 root root 4096 2009-06-04 19:02 /tmp

33.2. setgid bit on directory

setgid can be used on directories to make sure that all files inside the directory are owned
by the group owner of the directory. The setgid bit is displayed at the same location as the
X permission for group owner. The setgid bit is represented by an s (meaning x is also there)
or a S (when there is no x for the group owner). As this example shows, even though root
does not belong to the group proj55, the files created by root in /project55 will belong to
proj55 since the setgid is set.

28]

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

33. advanced file permissions

root@linux:~# groupadd proj55

root@linux:~# chown root:proj55 /project55/
root@linux:~# chmod 2775 /project55/

root@linux:~# touch /project55/fromroot.txt
root@linux:~# 1s -1d /project55/

drwxrwsr-x 2 root proj55 4096 Feb 7 17:45 /project55/
root@linux:~# 1s -1 /project55/

total 4
-rw-r--r-- 1 root proj55 @ Feb 7 17:45 fromroot.txt
rootlinux:~#

You can use the find command to find all setgid directories.

student@linux:~$ find / -type d -perm -2000 2> /dev/null
/var/log/mysql

/var/log/news

/var/local

33.3. setgid and setuid on regular files

These two permissions cause an executable file to be executed with the permissions of the
file ownerinstead ofthe executing owner. This means thatif any user executes a program
that belongs to the root user, and the setuid bit is set on that program, then the program
runs as root. This can be dangerous, but sometimes this is good for security.

Take the example of passwords; they are stored in /etc/shadow which is only readable by
root. (The root user never needs permissions anyway.)

root@linux:~# 1ls -1 /etc/shadow
-r-------- 1 root root 1260 Jan 21 07:49 /etc/shadow

Changing your password requires an update of this file, so how can normal non-root users
do this? Let's take a look at the permissions on the /usr/bin/passwd.

root@linux:~# 1s -1 /usr/bin/passwd
-r-s--x--x 1 root root 21200 Jun 17 2005 /usr/bin/passwd

When running the passwd program, you are executing it with root credentials.

You can use the find command to find all setuid programs.

student@linux:~$ find /usr/bin -type f -perm -04000
/usr/bin/arping

/usr/bin/kgrantpty

/usr/bin/newgrp

/usr/bin/chfn

/usr/bin/sudo

/usr/bin/fping6

/usr/bin/passwd

/usr/bin/gpasswd

In Mmost cases, setting the setuid bit on executables is sufficient. Setting the setgid bit will
result in these programs to run with the credentials of their group owner.

282

33.4. setuid on sudo

33.4. setuid on sudo

The sudo binary has the setuid bit set, so any user can run it with the effective userid of
root.

student@linux:~$ 1s -1 $(which sudo)
---s--x--X. 1 root root 123832 Oct 7 2013 /usr/bin/sudo
student@linux:~$

33.5. practice: sticky, setuid and setgid bits

1a. Set up a directory, owned by the group sports.

1b. Members of the sports group should be able to create files in this directory.
1c. All files created in this directory should be group-owned by the sports group.
1d. Users should be able to delete only their own user-owned files.

le. Test that this works!

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing your
password as a normal user. Reset the permissions back and try again.

3. If time permits (or if you are waiting for other students to finish this practice), read about
file attributes in the man page of chattr and Isattr. Try setting the i attribute on a file and
test that it works.

33.6. solution: sticky, setuid and setgid bits

la. Set up a directory, owned by the group sports.

groupadd sports
mkdir /home/sports

chown root:sports /home/sports

1b. Members of the sports group should be able to create files in this directory.
chmod 770 /home/sports

1c. All files created in this directory should be group-owned by the sports group.
chmod 2770 /home/sports

1d. Users should be able to delete only their own user-owned files.

chmod +t /home/sports

283

33. advanced file permissions

le. Test that this works!

Log in with different users (group members and others and root), create files and watch the
permissions. Try changing and deleting files...

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing your
password as a normal user. Reset the permissions back and try again.

root@linux:~# 1s -1 /usr/bin/passwd

-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd
root@linux:~# chmod 755 /usr/bin/passwd

root@linux:~# 1s -1 /usr/bin/passwd

-rwxr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd

A normal user cannot change password now.

root@linux:~# chmod 4755 /usr/bin/passwd
root@linux:~# 1s -1 /usr/bin/passwd
-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd

3. If time permits (or if you are waiting for other students to finish this practice), read about
file attributes in the man page of chattr and Isattr. Try setting the i attribute on a file and
test that it works

student@linux:~$ sudo su -

[sudo] password for paul:
rootalinux:~# mkdir attr
root@linux:~# cd attr/
root@linux:~/attr# touch file42
root@linux:~/attr# lsattr
—————————————————— ./file42
root@linux:~/attr# chattr +1 file42
root@linux:~/attr# lsattr

——— i /file42
root@linux:~/attr# rm -rf file42
rm: cannot remove " file42': Operation not permitted
root@linux:~/attr# chattr -i file42
root@linux:~/attr# rm -rf file42
root@linux:~/attr#

284

34. access control lists

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https;//github.com/zero-pytagoras/)

Standard Unix permissions might not be enough for some organisations. This chapter intro-
duces access control listsoracl's tofurther protect files and directories.

34.1. acl in /etc/fstab

File systems that support access control lists,oracls, have tobe mounted with the acl
option listed in /etc/fstab. In the example below, you can see that the root file system has
acl support, whereas /home/data does not.

root@linux:~# tail -4 /etc/fstab

/dev/sdal / ext3 acl,relatime 0 1
/dev/sdb2 /home/data auto noacl,defaults © 0
pasha:/home/r /home/pasha nfs defaults 0 0
wolf:/srv/data /home/wolf nfs defaults 0 0

34.2. getfacl

Reading acls can be done with /usr/bin/getfacl. This screenshot shows how to read the
acl of file33 with getfacl.

student@linux:~/test$ getfacl file33
#t file: file33

owner: paul

group: paul

user :: rw-

group ::r--

mask :: rwx

other::r--

34.3. setfacl

Writing or changing acls can be done with /usr/bin/setfacl. These screenshots show
how to change the acl of file33 with setfacl.

First we add user sandra with octal permission 7 to the acl.
student@linux:~/test$ setfacl -m u:sandra:7 file33
Then we add the group tennis with octal permission 6 to the acl of the same file.

student@linux:~/test$ setfacl -m g:tennis:6 file33

285

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

34. access control lists
The result is visible with getfacl.

student@linux:~/test$ getfacl file33
file: file33

owner: paul

group: paul

user::rw-

user:sandra:rwx

group ::r--

group:tennis:rw-

mask :: rwx

other::r--

34.4. remove an acl entry

The -x option of the setfacl command will remove an acl entry from the targeted file.

student@linux:~/test$ setfacl -m u:sandra:7 file33
student@linux:~/test$ getfacl file33 | grep sandra
user:sandra:rwx

student@linux:~/test$ setfacl -x sandra file33
student@linux:~/test$ getfacl file33 | grep sandra

Note that omitting the u or g when defining the acl for an account will default it to a user
account.

34.5. remove the complete acl

The -b option of the setfacl command will remove the acl from the targeted file.

student@linux:~/test$ setfacl -b file33
student@linux:~/test$ getfacl file33

file: file33

owner: paul

group: paul

user :: rw-
group::r--
other::r--

34.6. the acl mask

The acl mask defines the maximum effective permissions for any entry in the acl. Thismask
is calculated every time you execute the setfacl or chmod commands.

You can prevent the calculation by using the -—no-mask switch.

student@linux:~/test$ setfacl --no-mask -m u:sandra:7 file33
student@linux:~/test$ getfacl file33

#t file: file33

owner: paul

group: paul

286

34.7. eiciel

user :: rw-
user:sandra:rwx fteffective:rw-
group::r--
mask :: rw-
other::r--

34.7. eiciel

Desktop users might want to use eiciel to manage acls with a graphical tool.

Basic Emblems Permissions 'Dpen With | Notes | Access Control List

Access Control List

paul @ & : O

¥ ¥ -
@gpaul | O O
Bvask @ ® ®
;iﬁﬂther = 0O @ |§|

You will need to install eiciel and nautilus-actions to have an extra tab in nautilus to
manage acls.

student@linux:~$ sudo aptitude install eiciel nautilus-actions

287

35. file links

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

An average computer using Linux has a file system with many hard links and symbolic
links.

To understand links in a file system, you first have to understand what an inode is.

35.1. inodes

35.1.1. inode contents

An inode is a data structure that contains metadata about a file. When the file system stores
a new file on the hard disk, it stores not only the contents (data) of the file, but also extra
properties like the name of the file, the creation date, its permissions, the owner of the file,
and more. All this information (except the name of the file and the contents of the file) is
stored in the inode of the file.

The 1s -1 command will display some of the inode contents, as seen in this screenshot.

root@linux ~# 1s -1d /home/project42/
drwxr-xr-x 4 root pro42 4.0K Mar 27 14:29 /home/project42/

35.1.2. inode table

The inode table contains all of the inodes and is created when you create the file system
(with mkfs). You can use the df -i command to see how many inodes are used and free on
mounted file systems.

rootalinux ~# df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/mapper/VolGroup@@-LogVol00

4947968 115326 4832642 3% /

/dev/hdal 26104 45 26059 1% /boot

tmpfs 64417 1 64416 1% /dev/shm
/dev/sdal 262144 2207 259937 1% /home/project42
/dev/sdb1l 74400 5519 68881 8% /home/project33
/dev/sdb5 0 0 0 - /home/sales
/dev/sdb6 100744 11 100733 1% /home/research

Inthe df -1 screenshot above you can see the inode usage for several mounted file sys-
tems. You don't see numbers for /dev/sdb5 because it is a fat file system.

289

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

35. file links
35.1.3. inode number

Each inode has a unigue number (the inode number). You can see the inode numbers with
the 1s -1i command.

student@linux:~/test$ touch filel
student@linux:~/test$ touch file2
student@linux:~/test$ touch file3
student@linux:~/test$ 1s -11

total 12

817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 filel
817267 -rw-rw-r-- 1 paul paul @ Feb 5 15:38 file2
817268 -rw-rw-r-- 1 paul paul @ Feb 5 15:38 file3
student@linux:~/test$

These three files were created one after the other and got three different inodes (the first
column). All the information you see with this 1s command resides in the inode, except for
the filename (which is contained in the directory).

35.1.4. inode and file contents

Let's put some data in one of the files.

student@linux:~/test$ 1s -11

total 16

817266 -rw-rw-r-- 1 paul paul © Feb 5 15:38 filel
817270 -rw-rw-r-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul © Feb 5 15:38 file3
student@linux:~/test$ cat file2

It is winter now and it is very cold.

We do not like the cold, we prefer hot summer nights.
student@linux:~/test$

The data that is displayed by the cat command is not in the inode, but somewhere else on
the disk. The inode contains a pointer to that data.

35.2. about directories

35.2.1. a directory is a table

A directory is a special kind of file that contains a table which maps filenames to inodes.
Listing our current directory with 1s -ali will display the contents of the directory file.

student@linux:~/test$ 1ls -ali

total 32

817262 drwxrwxr-x 2 paul paul 4096 Feb 5 15:42 .
800768 drwx------ 16 paul paul 4096 Feb 5 15:42 ..
817266 -rw-rw-r-- 1 paul paul @ Feb 5 15:38 filel
817270 -rw-rw-r-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul @ Feb 5 15:38 file3

student@linux:~/test$

290

35.3. hard links
35.2.2. . and..

You can see five names, and the mapping to their five inodes. The dot . is a mapping to
itself, and the dotdot .. is a mapping to the parent directory. The three other names are
mappings to different inodes.

35.3. hard links

35.3.1. creating hard links

When we create a hard 1link to a file with 1n, an extra entry is added in the directory. A new
file name is mapped to an existing inode.

student@linux:~/test$ 1n file2 hardlink_to_file2
student@linux:~/test$ 1s -11

total 24

817266 -rw-rw-r-- 1 paul paul © Feb 5 15:38 filel

817270 -rw-rw-r-- 2 paul paul 92 Feb 5 15:42 file2

817268 -rw-rw-r-- 1 paul paul © Feb 5 15:38 file3

817270 -rw-rw-r-- 2 paul paul 92 Feb 5 15:42 hardlink_to_file2
student@linux:~/test$

Both files have the same inode, so they will always have the same permissions and the same
owner. Both files will have the same content. Actually, both files are equal now, meaning
you can safely remove the original file, the hardlinked file will remain. The inode contains a
counter, counting the number of hard links to itself. When the counter drops to zero, then
the inode is emptied.

35.3.2. finding hard links

You can use the find commmand to look for files with a certain inode. The screenshot below
shows how to search for all filenames that point to inode 817270. Remember that an inode
number is unique to its partition.

student@linux:~/test$ find / -inum 817270 2> /dev/null
/home/paul/test/file2
/home/paul/test/hardlink_to_file2

35.4. symbolic links

Symbolic links (sometimes called soft 1inks) do not link to inodes, but create a name to
name mapping. Symbolic links are created with In -s. As you can see below, the symbolic
link gets an inode of its own.

student@linux:~/test$ 1n -s file2 symlink_to_file2
student@linux:~/test$ 1s -11
total 32

17:04 hardlink_to_file2
16:55 symlink_to_file2 -> file2

817273 -rw-rw-r-- paul paul 13 Feb 5 17:06 filel
817270 -rw-rw-r-- paul paul 106 Feb 5 17:04 file2
817268 -rw-rw-r-- paul paul 0@ Feb 5 15:38 file3
5
5

817267 Lrwxrwxrwx paul paul 5 Feb

1
2
1
817270 -rw-rw-r-- 2 paul paul 106 Feb
1
student@linux:~/test$

291

35. file links

Permissions on a symbolic link have no meaning, since the permissions of the target apply.
Hard links are limited to their own partition (because they point to an inode), symbolic links
can link anywhere (other file systems, even networked).

35.5. removing links

Links can be removed with rm.

student@linux:~$ touch data.txt
student@linux:~$ 1n -s data.txt sl _data.txt
student@linux:~$ 1n data.txt hl_data.txt
student@linux:~$ rm sl_data.txt
student@linux:~$ rm hl _data.txt

35.6. practice: links

1. Create two files named winter.txt and summer.txt, put some text in them.
2. Create a hard link to winter.txt named hlwinter.txt.

3. Display the inode numbers of these three files, the hard links should have the same in-
ode.

4. Use the find command to list the two hardlinked files

5. Everything about a file is in the inode, except two things : name them!

6. Create a symbolic link to summer.txt called slsummer.txt.

7. Find all files with inode number 2. What does this information tell you ?

8. Look at the directories fetc/init.d/ fetc/rc2.d/ fetc/rc3.d/ ... do you see the links ?
9. Look in /lib with Is -I...

10. Use find to look in your home directory for regular files that have more than one hard
link (hint: this is identical to all regular files that do not have exactly one hard link).

35.7. solution : links

1. Create two files named winter.txt and summer.txt, put some text in them.
echo cold > winter.txt ; echo hot > summer.txt

2. Create a hard link to winter.txt named hlwinter.txt.

1n winter.txt hlwinter.txt

3. Display the inode numbers of these three files, the hard links should have the same in-
ode.

1s -11i winter.txt summer.txt hlwinter.txt

4. Use the find command to list the two hardlinked files

292

35.7. solution
find . -inum xyz #treplace xyz with the inode number

5. Everything about a file is in the inode, except two things : name them!
The name of the file is in a directory, and the contents is somewhere on the disk.

6. Create a symbolic link to summer.txt called slsummer.txt.
1n -s summer.txt slsummer.txt

7. Find all files with inode number 2. What does this information tell you ?

s links

It tells you there is more than one inode table (one for every formatted partition + virtual file

systems)
8. Look at the directories fetc/init.d/ fetc/rc.d/ fetc/rc3.d/ ... do you see the links ?

1s -1 /etc/init.d
1s -1 /etc/rc2.d

1s -1 /etc/rc3.d
9. Look in /lib with Is -I...

1s -1 /1lib

10. Use find to look in your home directory for regular files that have more than one hard

link (hint: this is identical to all regular files that do not have exactly one hard link).

find ~ ! -links 1 -type f

293

A. certifications

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

A.l. Certification

A.1.l. LPI: Linux Professional Institute
A1l LPIC Level 1

This is the junior level certification. You need to pass exams 101 and 102 to achieve LPIC 1
certification. To pass level one, you will need Linux command line, user management,
backup and restore, installation, networking, and basic system administration skills.

A.1.1.2. LPIC Level 2

This is the advanced level certification. You need to be LPIC 1 certified and pass exams 201
and 202 to achieve LPIC 2 certification. To pass level two, you will need to be able to
administer medium sized Linux networks, including Samba, mail, news, proxy, firewall, web,
and ftp servers.

A.1.1.3. LPIC Level 3

This is the senior level certification. It contains one core exam (301) which tests advanced
skills mainly about Idap. To achieve this level you also need LPIC Level 2 and pass a specialty
exam (302 or 303). Exam 302 mainly focuses on Samba, and 303 on advanced security. More
info on http://www.Ipi.org.

A.llL4. LPI DevOps Tools Engineer

certification exam focuses on the practical skills required to work successfully in a DevOps
environment -- focusing on the skills needed to use the most prominent DevOps tools. The
result is a certification that covers the intersection between development and operations,
making it relevant for all IT professionals working in the field of DevOps.

A.1.1.5. Ubuntu

When you are LPIC Level 1 certified, you can take a LPlI Ubuntu exam (199) and become
Ubuntu certified.

295

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

A. certifications

A.1.2. Red Hat

The big difference with most other certifications is that there are no multiple choice ques-
tions for RHCSA. Red Hat Certified System Administrator and Red Hat Certified Engineer have
to take a live exam consisting of two parts. First, they have to troubleshoot and maintain an
existing but broken setup (scoring at least 80 percent), and second they have to install and
configure a machine (scoring at least 70 percent).

A.1.3. MySQL

There are two tracks for MySQL certification; Certified MySQL 5.6 Developer (CMDEV) and
Certified MySQL 5.6 DBA (CMDBA). The CMDEV is focused towards database application de-
velopers, and the CMDBA towards database administrators. Both tracks require two exams
each. The MySQL cluster DBA certification requires CMDBA certification and passing the
CMCDBA exam.

A.l.4. Suse SLA/SCE

To become a Suse Certified Linux Professional, you have to take a live practicum. This
is a VNC session to a set of real SLES servers. You have to perform several tasks and are free
to choose your method (commandline or YaST or ...). No multiple choice involved.

A.1.5. Other certifications

There are many other lesser known certifications like EC council’s Certified Ethical Hacker,
CompTIlA’s Linux+, and Sair’s Linux GNU.

296

B. keyboard settings

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Serge Van Ginderachter, https./github.com/srgvg/)

B.1. about keyboard layout

Many people (like US-Americans) prefer the default US-qwerty keyboard layout. Sowhenyou
are not from the USA and want a local keyboard layout on your system, then the best practice
is to select this keyboard at installation time. Then the keyboard layout will always be correct.
Also, whenever you use ssh to remotely manage a Linux system, your local keyboard layout
will be used, independent of the server keyboard configuration. So you will not find much
information on changing keyboard layout on the fly on linux, because not many people need
it. Below are some tips to help you.

B.2. X Keyboard Layout

This is the relevant portion in /etc/X11/xorg.conf, first for Belgian azerty, then for US-qwerty.

[student@linux ~]$ grep -i xkb /etc/X11/xorg.conf

Option "XkbModel" "pcl1@5"

Option "XkbLayout" "be"
[student@linux ~]$ grep -i xkb /etc/X11/xorg.conf

Option "XkbModel" "pc1@5"

Option "XkbLayout" "us"

When in Gnome or KDE or any other graphical environment, look in the graphical menu in
preferences, there will be a keyboard section to choose your layout. Use the graphical menu
instead of editing xorg.conf.

B.3. shell keyboard layout

When in bash, take a look in the /etc/sysconfig/keyboard file. Below a sample US-gwerty
configuration, followed by a Belgian azerty configuration.

[student@linux ~]$ cat /etc/sysconfig/keyboard
KEYBOARDTYPE="pc"
KEYTABLE="us"

[student@linux ~]$ cat /etc/sysconfig/keyboard
KEYBOARDTYPE="pc"
KEYTABLE="be-latinl"

297

https://github.com/paulcobbaut/
https://github.com/srgvg/

B. keyboard settings
The keymaps themselves can be found in /usr/share/keymaps or /lib/kbd/keymaps.

[student@linux ~]$ 1s -1 /1lib/kbd/keymaps/
total 52

drwxr-xr-x 2 root root 4096 Apr 1 00:14 amiga
drwxr-xr-x 2 root root 4096 Apr 1 00:14 atari
drwxr-xr-x 8 root root 4096 Apr 1 00:14 i386
drwxr-xr-x 2 root root 4096 Apr 1 00:14 include
drwxr-xr-x 4 root root 4096 Apr 1 00:14 mac
lrwxrwxrwx 1 root root 3 Apr 1 00:14 ppc -> mac
drwxr-xr-x 2 root root 4096 Apr 1 00:14 sun

298

C. hardware

(Written by Paul Cobbaut, https.//github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https.//github.com/zero-pytagoras/)

C.1. buses

C.1.1. about buses

Hardware components communicate with the Central Processing Unit or cpuover a bus.
The most common buses today are usb, pci, agp, pci-express and pcmcia aka pc-card.
These are all Plag and Play buses.

Older x86 computers often had isa buses, which can be configured using jumpers or dip
switches.

C.1.2. /proc/bus

To list the buses recognised by the Linux kernel on your computer, look at the contents of
the /proc/bus/ directory (screenshot from Ubuntu 7.04 and RHEL4u4 below).

rootlinux:~# 1ls /proc/bus/
input pccard pci usb

[root@linux ~H 1s /proc/bus/
input pci usb

Can you guess which of these two screenshots was taken on a laptop ?

C.1.3. /usr/sbin/Isusb

To list all the usb devices connected to your system, you could read the contents of
/proc/bus/usb/devices (if it exists) or you could use the more readable output of lsusb,
which is executed here on a SPARC system with Ubuntu.

rootashaka:~# lsusb

Bus 001 Device 002: ID 0430:0100 Sun Microsystems, Inc. 3-button Mouse
Bus 001 Device 003: ID 0430:0005 Sun Microsystems, Inc. Type 6 Keyboard
Bus 001 Device 001: ID 04b0:0136 Nikon Corp. Coolpix 7900 (storage)
rootashaka:~#

299

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

C. hardware

C.1.4. /var/lib/usbutils/usb.ids

The /var/lib/usbutils/usb.ids file contains a gzipped list of all known usb devices.

student@linux:~$ zmore /var/lib/usbutils/usb.ids | head
—————— > /var/lib/usbutils/usb.ids <------

#
List of USB ID's

#

Maintained by Vojtech Pavlik <vojtech@suse.cz>

If you have any new entries, send them to the maintainer.
The latest version can be obtained from

http://ww .linux-usb.org/usb.ids

#

#

$Id: usb.ids,v 1.225 2006/07/13 04:18:02 dbrownell Exp $

C.1.5. /usr/sbin/lIspci

To get a list of all pci devices connected, you could take a look at /proc/bus/pciorrunlspci
(partial output below).

student@linux:~$ lspci

00:06.

0 FireWire (IEEE 1394): Texas Instruments TSB43AB22/A IEEE-139...
00:08.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-816...
00:09.0 Multimedia controller: Philips Semiconductors SAA7133/SAA713 ..
00:0a.0 Network controller: RaLink RT2500 802.11g Cardbus/mini-PCI
00:0f.0 RAID bus controller: VIA Technologies, Inc. VIA VT6420 SATA ...
00:0f.1 IDE interface: VIA Technologies, Inc. VT82C586A/B/VT82C686/A ...
00:10.0 USB Controller: VIA Technologies, Inc. VT82xxxxx UHCI USB 1....
00:10.1 USB Controller: VIA Technologies, Inc. VT82xxxxx UHCI USB 1....

C.2. interrupts

C.2.1. about interrupts

An interrupt request or IRQ is a request from a device to the CPU. A device raises an
interrupt when it requires the attention of the CPU (could be because the device has data
ready to be read by the CPU).

Since the introduction of pci, irg’s can be shared among devices.

Interrupt O is always reserved for the timer, interrupt 1 for the keyboard. IRQ 2 is used as a
channel for IRQ's 8 to 15, and thus is the same as IRQ 9.

300

C.2.2. /proc/interrupts

C.3. io ports

You can see a listing of interrupts on your system in /proc/interrupts.

student@linux:~$ cat /proc/interrupts

CPUO CPU1
0: 1320048 555 TIO0-APIC-edge timer
1: 10224 7 IO-APIC-edge 18042
7: 0 0 IO-APIC-edge parporto
8: 2 1 TIO0-APIC-edge rtc
10: 3062 21 I0-APIC-fasteoi acpi
12: 131 2 IO-APIC-edge 18042
15: 47073 0 IO-APIC-edge idel
18: 0 1 TI0-APIC-fasteoi yenta
19: 31056 1 TIO-APIC-fasteoi libata, ohcil394
20: 19042 1 I0-APIC-fasteoi etho
21: 44052 1 TI0-APIC-fasteoi uhci_hcd:usbl, uhci_hcd:usb2, ...
22: 188352 1 TI0-APIC-fasteoi rao
23: 632444 1 TI0-APIC-fasteoi nvidia
24 1585 1 TIO-APIC-fasteoi VIA82XX-MODEM, VIA8237

C.2.3. dmesg

You can also use dmesg to find irq's allocated at boot time.

student@linux:~$ dmesg | grep "irq 1[45]"
[28.930069] ata3: PATA max UDMA/133 cmd 0x1f0 ctl 0x3f6 bmdma 0x2090 irq 14
[28.930071] ata4: PATA max UDMA/133 cmd 0x170 ctl 0x376 bmdma 0x2098 irqg 15

C.3. io ports

C.3.1. about io ports

Communication in the other direction, from CPU to device, happens through I0 ports. The
CPU writes data or control codes to the IO port of the device. But this is not only a one way
communication, the CPU can also use a device's IO port to read status information about
the device. Unlike interrupts, ports cannot be shared!

C.3.2. /proc/ioports

You can see a listing of your system’s |10 ports via /proc/ioports.

[root@linux ~Ht cat /proc/ioports

0000-001f : dmal
0020-0021 : picl
0040-0043 timero
0050-0053 : timeril
0060-006f : keyboard
0070-0077 : rtc
0080-008f : dma page reg

301

C. hardware

00a0-00al : pic2
00c0-00df : dma2
00fo-00ff : fpu
0170-0177 : 1idel
02f8-02ff : serial

C.4. dma

C.4.1. about dma

A device that needs a lot of data, interrupts and ports can pose a heavy load on the cpu. With
dma or Direct Memory Access a device can gain (temporary) access to a specific range of
the ram memory.

C.4.2. /proc/dma

Looking at /proc/dma might not give you the information that you want, since it only con-
tains currently assigned dma channels for isa devices.

root@linux:~# cat /proc/dma
1: parport0
4: cascade

pci devices that are using dma are not listed in /proc/dma, in this case dmesg can be useful.
The screenshot below shows that during boot the parallel port received dma channel 1, and
the Infrared port received dma channel 3.

root@linux:~# dmesg | egrep -C 1 'dma 1|dma 3'

[20.576000] parport: PnPBIOS parport detected.

[20.580000] parport@: PC-style at 0x378 (0x778), irq 7, dma 1 ...
[20.764000] irda_init()

21.204000] pnp: Device 00:0b activated.

[
[21.204000] nsc_ircc_pnp_probe() : From PnP, found firbase 0x2F8...
[21.204000] nsc-ircc, chip->init

302

D. GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

D.1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commmercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software man-
uals; it can be used for any textual work, regardless of subject matter or whether it is pub-
lished as a printed book. We recommend this License principally for works whose purpose
is instruction or reference.

D.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document'’s overall subject (or to related matters) and contains nothing that could fall di-
rectly within that overall subject. (Thus, if the Documentisin part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this

303

D. GNU Free Documentation License

License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A“Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for in-
put to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCIlI without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats in-
clude proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of
the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ" means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as “Acknowl-
edgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title" of such a
section when you modify the Document means that it remains a section “Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

D.3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

304

D.4. COPYING IN QUANTITY

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

D.4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the cov-
ers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (di-
rectly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

D.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribu-
tion and modification of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

- A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

- B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

- C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

- D. Preserve all the copyright notices of the Document.

- E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

305

D. GNU Free Documentation License

- F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

- G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

- H. Include an unaltered copy of this License.

- |. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

- J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

- K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the con-
tributor acknowledgements and/or dedications given therein.

- L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

- M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

- N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

- O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

D.6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

306

D.7. COLLECTIONS OF DOCUMENTS

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unigue number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

D.7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy thatisincluded in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually un-
der this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

D.8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, is called an “aggre-
gate” if the copyright resulting from the compilation is not used to limit the legal rights of
the compilation’s users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

D.9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

307

D. GNU Free Documentation License

D.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it
is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been termi-
nated and not permanently reinstated, receipt of a copy of some or all of the same material
does not give you any rights to use it.

D.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Docu-
mentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http:
/Iwww.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document spec-
ifies that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’'s public
statement of acceptance of a version permanently authorizes you to choose that version for
the Document.

D.12. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site") means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC") contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of busi-
ness in San Francisco, California, as well as future copyleft versions of that license published
by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of an-
other Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently

308

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

D.12. RELICENSING

incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SAon
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

309

	Abstract
	Introduction to Linux
	Linux history
	1969
	1980s
	1990s
	2015

	distributions
	Linux and GNU
	Package management
	The Red Hat family of distributions
	The Debian family of distributions
	Notable ``independent'' distributions
	Which to choose?

	licensing
	about software licenses
	public domain software and freeware
	Free Software or Open Source Software
	GNU General Public License
	using GPLv3 software
	BSD license
	other licenses
	combination of software licenses

	Installing Linux
	installing Debian 8
	Debian
	Downloading
	virtualbox networking
	setting the hostname
	adding a static ip address
	Debian package management

	installing CentOS 8
	download a CentOS 7 image
	Virtualbox
	CentOS 7 installing
	CentOS 7 first logon
	setting the hostname

	Virtualbox network interface
	configuring the network
	adding one static ip address
	package management
	logon from Linux and MacOSX
	logon from MS Windows

	getting Linux at home
	download a Linux CD image
	download Virtualbox
	create a virtual machine
	attach the CD image
	install Linux

	First steps on the command line
	man pages
	man $command
	man $configfile
	man $daemon
	man -k (apropos)
	whatis
	whereis
	man sections
	man $section $file
	man man
	mandb

	working with directories
	pwd
	cd
	cd ~
	cd ..
	cd -

	absolute and relative paths
	path completion
	ls
	ls -a
	ls -l
	ls -lh

	mkdir
	mkdir -p

	rmdir
	rmdir -p

	practice: working with directories
	solution: working with directories

	working with files
	all files are case sensitive
	everything is a file
	file
	touch
	create an empty file
	touch -t

	rm
	remove forever
	rm -i
	rm -rf

	cp
	copy one file
	copy to another directory
	cp -r
	copy multiple files to directory
	cp -i

	mv
	rename files with mv
	rename directories with mv
	mv -i

	rename
	about rename
	rename on Debian/Ubuntu
	rename on CentOS/RHEL/Fedora

	practice: working with files
	solution: working with files

	working with file contents
	head
	tail
	cat
	concatenate
	create files
	custom end marker
	copy files

	tac
	more and less
	strings
	practice: file contents
	solution: file contents

	the Linux file tree
	filesystem hierarchy standard
	man hier
	the root directory /
	binary directories
	/bin
	other /bin directories
	/sbin
	/lib
	/opt

	configuration directories
	/boot
	/etc

	data directories
	/home
	/root
	/srv
	/media
	/mnt
	/tmp

	in memory directories
	/dev
	/proc conversation with the kernel
	/sys Linux 2.6 hot plugging

	/usr Unix System Resources
	/usr/bin
	/usr/include
	/usr/lib
	/usr/local
	/usr/share
	/usr/src

	/var variable data
	/var/log
	/var/log/messages
	/var/cache
	/var/spool
	/var/lib
	/var/...

	practice: file system tree
	solution: file system tree

	Shell expansion
	commands and arguments
	arguments
	white space removal
	single quotes
	double quotes
	echo and quotes
	commands
	external or builtin commands ?
	type
	running external commands
	which

	aliases
	create an alias
	abbreviate commands
	default options
	viewing aliases
	unalias

	displaying shell expansion
	practice: commands and arguments
	solution: commands and arguments

	control operators
	; semicolon
	& ampersand
	$? dollar question mark
	&& double ampersand
	|| double vertical bar
	combining && and ||
	# pound sign
	\ escaping special characters
	end of line backslash

	practice: control operators
	solution: control operators

	shell variables
	$ dollar sign
	case sensitive
	creating variables
	quotes
	set
	unset
	$PS1
	$PATH
	env
	export
	delineate variables
	unbound variables
	practice: shell variables
	solution: shell variables

	shell embedding and options
	shell embedding
	backticks
	backticks or single quotes

	shell options
	practice: shell embedding
	solution: shell embedding

	shell history
	repeating the last command
	repeating other commands
	history
	!n
	Ctrl-r
	$HISTSIZE
	$HISTFILE
	$HISTFILESIZE
	prevent recording a command
	(optional)regular expressions
	(optional) Korn shell history
	practice: shell history
	solution: shell history

	file globbing
	* asterisk
	? question mark
	[] square brackets
	a-z and 0-9 ranges
	$LANG and square brackets
	preventing file globbing
	practice: shell globbing
	solution: shell globbing

	Pipes and commands
	I/O redirection
	stdin, stdout, and stderr
	output redirection
	> stdout
	output file is erased
	noclobber
	overruling noclobber
	>> append

	error redirection
	2> stderr
	2>&1

	output redirection and pipes
	joining stdout and stderr
	input redirection
	< stdin
	<< here document
	<<< here string

	confusing redirection
	quick file clear
	practice: input/output redirection
	solution: input/output redirection

	filters
	cat
	tee
	grep
	cut
	tr
	wc
	sort
	uniq
	comm
	od
	sed
	pipe examples
	who | wc
	who | cut | sort
	grep | cut

	practice: filters
	solution: filters

	basic Unix tools
	find
	locate
	date
	cal
	sleep
	time
	gzip - gunzip
	zcat - zmore
	bzip2 - bunzip2
	bzcat - bzmore
	practice: basic Unix tools
	solution: basic Unix tools

	regular expressions
	regex versions
	grep
	print lines matching a pattern
	concatenating characters
	one or the other
	one or more
	match the end of a string
	match the start of a string
	separating words
	grep features
	preventing shell expansion of a regex

	rename
	the rename command
	perl
	well known syntax
	a global replace
	case insensitive replace
	renaming extensions

	sed
	stream editor
	interactive editor
	simple back referencing
	back referencing
	a dot for any character
	multiple back referencing
	white space
	optional occurrence
	exactly n times
	between n and m times

	bash history

	Vi
	Introduction to vi
	command mode and insert mode
	start typing (a A i I o O)
	replace and delete a character (r x X)
	undo, redo and repeat (u .)
	cut, copy and paste a line (dd yy p P)
	cut, copy and paste lines (3dd 2yy)
	start and end of a line (0 or ^ and $)
	join two lines (J) and more
	words (w b)
	save (or not) and exit (:w :q :q!)
	Searching (/ ?)
	replace all (:1,$ s/foo/bar/g)
	reading files (:r :r !cmd)
	text buffers
	multiple files
	abbreviations
	key mappings
	setting options
	practice: vi(m)
	solution: vi(m)

	Scripting
	introduction to scripting
	introduction
	hello world
	she-bang
	comments
	extension
	shell variables
	variable assignment
	unbound variables
	sourcing a script
	quoting
	troubleshooting a script
	Bash's ``strict mode''
	prevent setuid root spoofing
	practice: introduction to scripting
	solution: introduction to scripting

	scripting loops
	test []
	if then else
	if then elif
	for loop
	while loop
	until loop
	practice: scripting tests and loops
	solution: scripting tests and loops

	scripting parameters
	script parameters
	shift through parameters
	runtime input
	sourcing a config file
	get script options with getopts
	get shell options with shopt
	practice: parameters and options
	solution: parameters and options

	more scripting
	eval
	(())
	let
	case
	shell functions
	practice : more scripting
	solution : more scripting

	Local user management
	introduction to users
	whoami
	who
	who am i
	w
	id
	su to another user
	su to root
	su as root
	su - $username
	su -
	run a program as another user
	visudo
	sudo su -
	sudo logging
	practice: introduction to users
	solution: introduction to users

	user management
	user management
	/etc/passwd
	root
	useradd
	/etc/default/useradd
	userdel
	usermod
	creating home directories
	/etc/skel/
	deleting home directories
	login shell
	chsh
	practice: user management
	solution: user management

	user passwords
	passwd
	shadow file
	encryption with passwd
	encryption with openssl
	encryption with crypt
	/etc/login.defs
	chage
	disabling a password
	editing local files
	practice: user passwords
	solution: user passwords

	User profiles
	system profile
	~/.bash_profile
	~/.bash_login
	~/.profile
	~/.bashrc
	~/.bash_logout
	Debian overview
	RHEL5 overview
	practice: user profiles
	solution: user profiles

	groups
	groupadd
	group file
	groups
	usermod
	groupmod
	groupdel
	gpasswd
	newgrp
	vigr
	practice: groups
	solution: groups

	File security
	standard file permissions
	file ownership
	user owner and group owner
	chgrp
	chown

	list of special files
	permissions
	rwx
	three sets of rwx
	permission examples
	setting permissions with symbolic notation
	setting permissions with octal notation
	umask
	mkdir -m
	cp -p

	practice: standard file permissions
	solution: standard file permissions

	advanced file permissions
	sticky bit on directory
	setgid bit on directory
	setgid and setuid on regular files
	setuid on sudo
	practice: sticky, setuid and setgid bits
	solution: sticky, setuid and setgid bits

	access control lists
	acl in /etc/fstab
	getfacl
	setfacl
	remove an acl entry
	remove the complete acl
	the acl mask
	eiciel

	file links
	inodes
	inode contents
	inode table
	inode number
	inode and file contents

	about directories
	a directory is a table
	. and ..

	hard links
	creating hard links
	finding hard links

	symbolic links
	removing links
	practice : links
	solution : links

	certifications
	Certification
	LPI: Linux Professional Institute
	Red Hat
	MySQL
	Suse SLA/SCE
	Other certifications

	keyboard settings
	about keyboard layout
	X Keyboard Layout
	shell keyboard layout

	hardware
	buses
	about buses
	/proc/bus
	/usr/sbin/lsusb
	/var/lib/usbutils/usb.ids
	/usr/sbin/lspci

	interrupts
	about interrupts
	/proc/interrupts
	dmesg

	io ports
	about io ports
	/proc/ioports

	dma
	about dma
	/proc/dma

	GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	RELICENSING

