
Linux Introduction

Paul Cobbaut Bert Van Vreckem

September 18, 2024

Contents

0.1. Conventions used . 2
0.2. Reporting errors . 2

I. introduction to Linux 3

1. Linux history 5
1.1. 1969 . 5
1.2. 1980s . 5
1.3. 1990s . 6
1.4. 2015 . 6

2. distributions 7
2.1. Linux and GNU . 7
2.2. Package management . 7
2.3. The Red Hat family of distributions . 8
2.4. The Debian family of distributions . 9
2.5. Notable “independent” distributions . 10
2.6. Which to choose? . 10

3. licensing 13
3.1. about software licenses . 13
3.2. public domain software and freeware . 14
3.3. Free Software or Open Source Software . 14
3.4. GNU General Public License . 15
3.5. using GPLv3 software . 15
3.6. BSD license . 15
3.7. other licenses . 15
3.8. combination of software licenses . 16

II. command structure 17

4. commands and arguments 19
4.1. arguments . 19
4.2. white space removal . 19
4.3. single quotes . 20
4.4. double quotes . 20
4.5. echo and quotes . 20
4.6. commands . 21

4.6.1. external or builtin commands ? . 21
4.6.2. type . 21
4.6.3. running external commands . 21
4.6.4. which . 21

4.7. aliases . 22
4.7.1. create an alias . 22
4.7.2. abbreviate commands . 22
4.7.3. default options . 22
4.7.4. viewing aliases . 22
4.7.5. unalias . 23

4.8. displaying shell expansion . 23

iii

Contents

4.9. practice: commands and arguments . 23
4.10. solution: commands and arguments . 24

5. shell history 27
5.1. repeating the last command . 27
5.2. repeating other commands . 27
5.3. history . 27
5.4. !n . 28
5.5. Ctrl-r . 28
5.6. $HISTSIZE . 28
5.7. $HISTFILE . 28
5.8. $HISTFILESIZE . 29
5.9. prevent recording a command . 29
5.10. (optional)regular expressions . 29
5.11. (optional) Korn shell history . 29
5.12. practice: shell history . 30
5.13. solution: shell history . 30

III. variables 33

6. shell variables 35
6.1. $ dollar sign . 35
6.2. case sensitive . 35
6.3. creating variables . 35
6.4. quotes . 36
6.5. set . 36
6.6. unset . 36
6.7. $PS1 . 36
6.8. $PATH . 37
6.9. env . 38
6.10. export . 38
6.11. delineate variables . 39
6.12. unbound variables . 39
6.13. practice: shell variables . 39
6.14. solution: shell variables . 40

IV. the semicolon 43

7. control operators 45
7.1. ; semicolon . 45
7.2. & ampersand . 45
7.3. $? dollar question mark . 46
7.4. && double ampersand . 46
7.5. || double vertical bar . 46
7.6. combining && and || . 47
7.7. # pound sign . 47
7.8. \ escaping special characters . 47

7.8.1. end of line backslash . 47
7.9. practice: control operators . 48
7.10. solution: control operators . 48

V. getting help 51

8. man pages 53
8.1. man $command . 53
8.2. man $configfile . 53

iv

Contents

8.3. man $daemon . 53
8.4. man -k (apropos) . 54
8.5. whatis . 54
8.6. whereis . 54
8.7. man sections . 54
8.8. man $section $file . 55
8.9. man man . 55
8.10. mandb . 55

VI. the file system 57

9. the Linux file tree 59
9.1. filesystem hierarchy standard . 59
9.2. man hier . 59
9.3. the root directory / . 59
9.4. binary directories . 59

9.4.1. /bin . 60
9.4.2. other /bin directories . 60
9.4.3. /sbin . 60
9.4.4. /lib . 60
9.4.5. /opt . 61

9.5. configuration directories . 61
9.5.1. /boot . 61
9.5.2. /etc . 62

9.6. data directories . 63
9.6.1. /home . 63
9.6.2. /root . 64
9.6.3. /srv . 64
9.6.4. /media . 64
9.6.5. /mnt . 64
9.6.6. /tmp . 64

9.7. in memory directories . 64
9.7.1. /dev . 64
9.7.2. /proc conversation with the kernel . 65
9.7.3. /sys Linux 2.6 hot plugging . 68

9.8. /usr Unix System Resources . 68
9.8.1. /usr/bin . 69
9.8.2. /usr/include . 69
9.8.3. /usr/lib . 69
9.8.4. /usr/local . 69
9.8.5. /usr/share . 70
9.8.6. /usr/src . 70

9.9. /var variable data . 70
9.9.1. /var/log . 70
9.9.2. /var/log/messages . 71
9.9.3. /var/cache . 71
9.9.4. /var/spool . 71
9.9.5. /var/lib . 71
9.9.6. /var/... 71

9.10. practice: file system tree . 72
9.11. solution: file system tree . 73

VII.directory contents 75

10. working with directories 77
10.1. pwd . 77

v

Contents

10.2. cd . 77
10.2.1. cd ~ . 77
10.2.2. cd .. 78
10.2.3. cd - . 78

10.3. absolute and relative paths . 78
10.4. path completion . 79
10.5. ls . 79

10.5.1. ls -a . 79
10.5.2. ls -l . 80
10.5.3. ls -lh . 80

10.6. mkdir . 81
10.6.1. mkdir -p . 81

10.7. rmdir . 81
10.7.1. rmdir -p . 82

10.8. practice: working with directories . 82
10.9. solution: working with directories . 83

VIII.globbing 85

11. file globbing 87
11.1. * asterisk . 87
11.2. ? question mark . 87
11.3. [] square brackets . 88
11.4. a-z and 0-9 ranges . 88
11.5. $LANG and square brackets . 89
11.6. preventing file globbing . 89
11.7. practice: shell globbing . 89
11.8. solution: shell globbing . 90

IX. file and directory management 93

12. working with files 95
12.1. all files are case sensitive . 95
12.2. everything is a file . 95
12.3. file . 95
12.4. touch . 96

12.4.1. create an empty file . 96
12.4.2. touch -t . 96

12.5. rm . 97
12.5.1. remove forever . 97
12.5.2. rm -i . 97
12.5.3. rm -rf . 97

12.6. cp . 97
12.6.1. copy one file . 97
12.6.2. copy to another directory . 98
12.6.3. cp -r . 98
12.6.4. copy multiple files to directory . 98
12.6.5. cp -i . 98

12.7. mv . 99
12.7.1. rename files with mv . 99
12.7.2. rename directories with mv . 99
12.7.3. mv -i . 99

12.8. rename . 100
12.8.1. about rename . 100
12.8.2. rename on Debian/Ubuntu . 100
12.8.3. rename on CentOS/RHEL/Fedora . 100

vi

Contents

12.9. practice: working with files . 101
12.10.solution: working with files . 101

13. basic Unix tools 103
13.1. find . 103
13.2. locate . 104
13.3. date . 104
13.4. cal . 105
13.5. sleep . 105
13.6. time . 105
13.7. gzip - gunzip . 106
13.8. zcat - zmore . 106
13.9. bzip2 - bunzip2 . 106
13.10.bzcat - bzmore . 107
13.11. practice: basic Unix tools . 107
13.12.solution: basic Unix tools . 108

X. links 111

14.file links 113
14.1. inodes . 113

14.1.1. inode contents . 113
14.1.2. inode table . 113
14.1.3. inode number . 114
14.1.4. inode and file contents . 114

14.2. about directories . 114
14.2.1. a directory is a table . 114
14.2.2. . and .. 115

14.3. hard links . 115
14.3.1. creating hard links . 115
14.3.2. finding hard links . 115

14.4. symbolic links . 115
14.5. removing links . 116
14.6. practice : links . 116
14.7. solution : links . 116

XI. working with text 119

15. working with file contents 121
15.1. head . 121
15.2. tail . 122
15.3. cat . 122

15.3.1. concatenate . 122
15.3.2. create files . 123
15.3.3. custom end marker . 123
15.3.4. copy files . 123

15.4. tac . 124
15.5. more and less . 124
15.6. strings . 124
15.7. practice: file contents . 124
15.8. solution: file contents . 125

16. I/O redirection 127
16.1. stdin, stdout, and stderr . 127
16.2. output redirection . 127

16.2.1. > stdout . 127
16.2.2. output file is erased . 128

vii

Contents

16.2.3. noclobber . 128
16.2.4. overruling noclobber . 129
16.2.5. » append . 129

16.3. error redirection . 129
16.3.1. 2> stderr . 129
16.3.2. 2>&1 . 129

16.4. output redirection and pipes . 130
16.5. joining stdout and stderr . 130
16.6. input redirection . 131

16.6.1. < stdin . 131
16.6.2. « here document . 131
16.6.3. «< here string . 131

16.7. confusing redirection . 132
16.8. quick file clear . 132
16.9. practice: input/output redirection . 132
16.10.solution: input/output redirection . 133

17. regular expressions 135
17.1. regex versions . 135
17.2. grep . 135

17.2.1. print lines matching a pattern . 135
17.2.2. concatenating characters . 136
17.2.3. one or the other . 136
17.2.4. one or more . 137
17.2.5. match the end of a string . 137
17.2.6. match the start of a string . 137
17.2.7. separating words . 138
17.2.8. grep features . 138
17.2.9. preventing shell expansion of a regex . 139

17.3. rename . 139
17.3.1. the rename command . 139
17.3.2. perl . 139
17.3.3. well known syntax . 140
17.3.4. a global replace . 140
17.3.5. case insensitive replace . 141
17.3.6. renaming extensions . 141

17.4. sed . 141
17.4.1. stream editor . 141
17.4.2. interactive editor . 142
17.4.3. simple back referencing . 142
17.4.4. back referencing . 142
17.4.5. a dot for any character . 142
17.4.6. multiple back referencing . 142
17.4.7. white space . 143
17.4.8. optional occurrence . 143
17.4.9. exactly n times . 143
17.4.10.between n and m times . 144

17.5. bash history . 144

XII.user group management 147

18. groups 149
18.1. groupadd . 149
18.2. group file . 149
18.3. groups . 150
18.4. usermod . 150
18.5. groupmod . 150
18.6. groupdel . 150

viii

Contents

18.7. gpasswd . 151
18.8. newgrp . 151
18.9. vigr . 152
18.10.practice: groups . 152
18.11. solution: groups . 152

XIII.user management 155

19. introduction to users 157
19.1. whoami . 157
19.2. who . 157
19.3. who am i . 157
19.4. w . 158
19.5. id . 158
19.6. su to another user . 158
19.7. su to root . 158
19.8. su as root . 158
19.9. su - $username . 159
19.10.su - . 159
19.11. run a program as another user . 159
19.12.visudo . 159
19.13.sudo su - . 160
19.14.sudo logging . 160
19.15.practice: introduction to users . 160
19.16.solution: introduction to users . 161

20.user management 163
20.1. user management . 163
20.2./etc/passwd . 163
20.3.root . 164
20.4.useradd . 164
20.5./etc/default/useradd . 164
20.6.userdel . 164
20.7.usermod . 165
20.8.creating home directories . 165
20.9./etc/skel/ . 165
20.10.deleting home directories . 165
20.11.login shell . 166
20.12.chsh . 166
20.13.practice: user management . 166
20.14.solution: user management . 167

21. user passwords 169
21.1. passwd . 169
21.2. shadow file . 169
21.3. encryption with passwd . 170
21.4. encryption with openssl . 170
21.5. encryption with crypt . 171
21.6. /etc/login.defs . 172
21.7. chage . 172
21.8. disabling a password . 173
21.9. editing local files . 173
21.10.practice: user passwords . 174
21.11. solution: user passwords . 174

ix

Contents

XIV.file permissions 177

22.standard file permissions 179
22.1. file ownership . 179

22.1.1. user owner and group owner . 179
22.1.2. chgrp . 179
22.1.3. chown . 180

22.2. list of special files . 180
22.3. permissions . 181

22.3.1. rwx . 181
22.3.2. three sets of rwx . 181
22.3.3. permission examples . 181
22.3.4. setting permissions with symbolic notation 182
22.3.5. setting permissions with octal notation . 183
22.3.6. umask . 184
22.3.7. mkdir -m . 185
22.3.8. cp -p . 185

22.4.practice: standard file permissions . 185
22.5. solution: standard file permissions . 186

A. GNU Free Documentation License 189
A.1. PREAMBLE . 189
A.2. APPLICABILITY AND DEFINITIONS . 189
A.3. VERBATIM COPYING . 190
A.4. COPYING IN QUANTITY . 191
A.5. MODIFICATIONS . 191
A.6. COMBINING DOCUMENTS . 192
A.7. COLLECTIONS OF DOCUMENTS . 193
A.8. AGGREGATIONWITH INDEPENDENTWORKS . 193
A.9. TRANSLATION . 193
A.10.TERMINATION . 194
A.11. FUTURE REVISIONS OF THIS LICENSE . 194
A.12. RELICENSING . 194

x

Contents

.

Feel free to contact the author(s):

• Paul Cobbaut (Netsec BVBA): paul.cobbaut@gmail.com, https://cobbaut.be/
• Bert Van Vreckem (HOGENT): http://github.com/bertvv

Copyright 2007-2024 Netsec BVBA, Paul Cobbaut

This copy was generated on September 18, 2024.

Permission is granted to copy, distribute and/or modify this document under the terms of
theGNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘GNU Free Documentation
License’. # Abstract {.unnumbered}

This book covers the topics introduced in the course “Computer Systems” for the Bachelor
of Applied Computer Science at the HOGENT, Belgium. The course consists partly of a basic
introduction to the Linux operating system. This book is not the official handbook of that
course, but is targeted at students who need a refresher on the topics covered.

The content is based on the Linux Training book series by Paul Cobbaut, with updates and
additions written by the HOGENT Linux team.

More information and free .pdf available at https://hogenttin.github.io/linux-training-
hogent/.

1

mailto:paul.cobbaut@gmail.com
https://cobbaut.be/
http://github.com/bertvv
https://linux-training.be
https://hogenttin.github.io/linux-training-hogent/
https://hogenttin.github.io/linux-training-hogent/

Contents

0.1. Conventions used

The contributors to this work have taken great care that the examples with command line
interactions are correct and work as expected. However, sometimes the output of a com-
mand may differ slightly from the examples in this book. This can be due to differences in
the version of the software, the operating system, the environment in which the command
is executed, or the specific state of the system at the time of execution.

Some Linux distributions may have commands that behave differently than their coun-
terparts in other distributions. This is especially true for the package management
commands.

Command line examples are shown in a monospaced font with a prompt that indicates the
user and hostname in the form user@hostname:current_directory$. For example:

student@debian:~$ ls
root@linux:~# ls

We follow the following conventions:

• Regular user vs root:

– A regular user prompt is shown as $, the user name is generally student.
– A root prompt (with elevated privileges) is shown as #.

• The linux distribution is indicated by the host name:

– If the command should work on any Linux distribution, the hostname is linux.
– If the command is specific to a certain distribution, the hostname is the name of
that distribution, e.g. debian, ubuntu, rhel, etc.

– If you see el as the host name (short for Enterprise Linux), you can assume that
it was tested on an Alma Linux machine and that it should work on any Red Hat-
based distribution.

• Commands that are run on a prompt that is not necessarily a Linux system (e.g. you’re
running Linux in a VM on a Windows host) are shown with a generic > prompt, e.g. >
winget install Git.Git.

0.2. Reporting errors

Did you find an error in this book, or is the output of a command considerably different from
what is shown? Please report it by creating an issue on the linux-training-hogent GitHub
repository.

2

https://almalinux.org
https://github.com/HoGentTIN/linux-training-hogent/issues
https://github.com/HoGentTIN/linux-training-hogent/issues

Part I.

introduction to Linux

3

1. Linux history

(Written by Paul Cobbaut, https://github.com/paulcobbaut/)

This chapter briefly tells the history of Unix and where Linux fits in.

If you are eager to start working with Linux without this blah, blah, blah over history, dis-
tributions, and licensing then jump straight to Part II - Chapter 8. Working with
Directories page 73.

1.1. 1969

Allmodernoperating systemshave their roots in 1969whenDennis Ritchie andKen Thomp-
sondeveloped theC language and the Unix operating systemat AT&TBell Labs. They shared
their source code (yes, therewas open sourceback in the Seventies)with the rest of theworld,
including the hippies in Berkeley California. By 1975, whenAT&T started sellingUnix commer-
cially, about half of the source codewas written by others. The hippies were not happy that a
commercial company sold software that they had written; the resulting (legal) battle ended
in there being two versions of Unix: the official AT&T Unix, and the free BSD Unix.

Development of BSDdescendants like FreeBSD, OpenBSD, NetBSD, DragonFly BSD and PC-
BSD is still active today.

https:^/en.wikipedia.org/wiki/Dennis_Ritchie
https:^/en.wikipedia.org/wiki/Ken_Thompson
https:^/en.wikipedia.org/wiki/BSD
https:^/en.wikipedia.org/wiki/Comparison_of_BSD_operating_systems

1.2. 1980s

In the Eighties many companies started developing their own Unix: IBM created AIX, Sun
SunOS (later Solaris), HPHP-UX and about a dozen other companies did the same. The result
was a mess of Unix dialects and a dozen different ways to do the same thing. And here is
the first real root of Linux, when Richard Stallman aimed to end this era of Unix separation
and everybody re-inventing the wheel by starting the GNU project (GNU is Not Unix). His goal
was tomake an operating system that was freely available to everyone, and where everyone
could work together (like in the Seventies). Many of the command line tools that you use
today on Linux are GNU tools.

https:^/en.wikipedia.org/wiki/Richard_Stallman
https:^/en.wikipedia.org/wiki/IBM_AIX
https:^/en.wikipedia.org/wiki/HP-UX

5

https://github.com/paulcobbaut/

1. Linux history

1.3. 1990s

The Nineties started with Linus Torvalds, a Swedish speaking Finnish student, buying a
386 computer and writing a brand new POSIX compliant kernel. He put the source code
online, thinking it would never support anything but 386 hardware. Many people embraced
the combination of this kernel with the GNU tools, and the rest, as they say, is history.

http:^/en.wikipedia.org/wiki/Linus_Torvalds
https:^/en.wikipedia.org/wiki/History_of_Linux
https:^/en.wikipedia.org/wiki/Linux
https:^/lwn.net
http:^/^^w.levenez.com/unix/ (a huge Unix history poster)

1.4. 2015

Today more than 97 percent of the world’s supercomputers (including the complete top 10),
more than 80 percent of all smartphones, many millions of desktop computers, around 70
percent of all web servers, a large chunk of tablet computers, and several appliances (dvd-
players, washing machines, dsl modems, routers, self-driving cars, space station laptops...)
run Linux. Linux is by far the most commonly used operating system in the world.

Linux kernel version 4.0 was released in April 2015. Its source code grew by several hun-
dred thousand lines (compared to version 3.19 fromFebruary 2015) thanks to contributions of
thousands of developers paid by hundreds of commercial companies including Red Hat, In-
tel, Samsung, Broadcom, Texas Instruments, IBM, Novell, Qualcomm, Nokia, Oracle, Google,
AMD and even Microsoft (and many more).

http:^/kernelnewbies.org/DevelopmentStatistics
http:^/kernel.org
http:^/^^w.top500.org

6

2. distributions

(Written by Paul Cobbaut, https://github.com/paulcobbaut/ with contributions
by Bert Van Vreckem https://github.com/bertvv/)

This chapter gives a short overview of current Linux distributions.

A Linux distribution is a collectionof (usually open source) software on topof a Linux kernel.
A distribution (or short, distro) can bundle server software, system management tools, doc-
umentation andmany desktop applications in a central secure software repository. A
distro aims to provide a common look and feel, secure and easy software management and
often a specific operational purpose.

Let’s take a look at some popular distributions.

2.1. Linux and GNU

The Linux Kernel project was started by Linus Torvalds in 1991 while he was a computer sci-
ence student. He wanted to run a UNIX-like operating system on his own PC. Now, a kernel
in itself is not a complete operating system. The kernel does not provide a terminal, tools to
manage files, etc. However, the GNU project (which stands for GNU’s Not UNIX), started by
Richard Stallman, had been working on a complete operating system since 1983. The GNU
project had a lot of the necessary tools and libraries to make a complete POSIX-compliant
operating system, a.o. the GNU Compiler Collection (GCC), the GNU C Library (glibc), the
GNU Core Utilities (coreutils), the GNU Bash shell, etc. They were also working on a kernel,
called GNU Hurd, but development was prohibitively slow. Indeed, it was not until 2015 that
the Hurd kernel was ready to be actually used.

Long story short, the Linux kernel in combination with the GNU tools and libraries made
a complete operating system. This is why the operating system is often referred to as
GNU/Linux. Both Linux as the GNU projects are open source and released under the GNU
General Public License. Thismade it easy for third parties to redistribute GNU+Linux and add
other compatible (open source) software packages to form a complete operating system
with everything an end user needs to be productive on the computer. This is what we call
a Linux distribution. The oldest still active distribution is Slackware, which was started in
1993 by Patrick Volkerding. Since then, many distributions have been created, each with
their own goals and target audience. Some distributions (or distro’s in short) are built from
the ground up, but others are based on existing distributions, leading to large “families” of
like-minded distro’s.

Writing a comprehensive overview of all Linux distributions is way beyond the scope of this
course, but it is useful to knowabout someof themain ones. If youwant to knowmore about
a specific distribution, you can check out the DistroWatch website, which is a great resource
for information about Linux distributions.

2.2. Package management

Oneof the central and identifying components of a LinuxDistribution is the default selection
of software and the package management system to install, update and remove software.
Formost applications, there is choice in the open source world, so different distributions will

7

https://github.com/paulcobbaut/
https://github.com/bertvv/
https://kernel.org
https://www.gnu.org
https://posix.opengroup.org
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html
http://www.slackware.com
https://en.wikipedia.org/wiki/Linux_distribution#/media/File:2023_Linux_Distributions_Timeline.svg
https://distrowatch.com

2. distributions

makedifferent decisions onwhat to include andwhat to avoid. Sometimes this is regrettably
the cause of dispute and drama in the Linux community, but on the other hand, it is also the
driver of a lot of innovation and diversity and it empowers the user with a lot of freedom of
choice and control.

The package manager was actually one of the most important innovations that Linux pio-
neered in. It is a system that keeps track of all the software installed on a computer and
allows the user to select and install new applications from online package repositories. Hot-
fixes or new releases of the software included in a distribution are made available in these
repositories and canbedownloaded and installedwith a single command. Thismakes it very
easy to keep a Linux system up to date and secure. When Apple introduced the App Store
in 2008, it was actually a latecomer to the concept of a central secure software repository.

The concept of an open source package repository also enables reuse of software and li-
braries. Applications don’t have to write their own code to do things like read and write files,
manage memory, etc. They can use libraries that are already available on the system and
that are used by other applications. The package manager also takes care of dependencies,
which are other software packages that are required for the software to work. This makes it
very easy to install complex software with a single command.

2.3. The Red Hat family of distributions

Red Hat is one of the first commercial companies that successfully leveraged open source
software as a business strategy. They started in 1993 andgrew in thenext decades to become
a billion dollar company. In 2019, Red Hat was acquired by IBM for 34 billion dollars and it still
operates as an independent subsidiary.

The flagship product of RedHat is RedHat Enterprise Linux, or RHEL in short. RHEL is a com-
mercial Linux distribution, but on release, the source code is made available. The business
model of Red Hat is based on selling support contracts.

RHEL is a stable and secure operating system, with long support cycles, which is why
it is widely used in enterprise environments where the stability of IT infrastructure is of
paramount importance. Enterprise software vendors that target Linux as a platform, usually
certify their software to run on RHEL. This is why RHEL is often used in data centers, cloud
environments and other mission-critical systems.

In order to innovate on the RHEL platform, RedHat is also involved in the development of the
Fedora distribution. Fedora is a community-driven project that aims to be a cutting-edge,
free and open source operating system that showcases the latest in free and open source
software. It is used as a testbed for new technologies that will eventuallymake their way into
RHEL. Fedora has a release cycle of 6 months. Where RHEL is particularly suited as a server
operating system, Fedora is an excellent choice as a desktop operating system for power
users and IT professionals.

Since RHEL is open source, it is in principle possible to create a compatible clone of RHEL,
albeit without the support and without Red Hat branding. This is exactly what the CentOS
project did for years. CentOS used to be a community driven project that aimed to be 100%
(bug-for-bug) compatible with RHEL and based on the released source code of all software
included in RHEL. However, in 2014, Red Hat acquired the CentOS project, and later, they
announced that CentOS Linuxwas going to be replaced by CentOS Stream, which is a rolling
releasedistribution “upstream”ofRHEL. Thismeans thatCentOSStreamnowtakes theplace
between Fedora and RHEL, and it is no longer a 100% compatible clone of RHEL anymore.

This incensedmany users and organizations that relied on CentOS as a free and compatible
alternative to RHEL. The CentOS project was forked, and the Rocky Linux project was started
by Gregory Kurtzer, who was also one of the original founders of CentOS. The goal of Rocky
Linux is to be a 100% compatible replacement for CentOS Linux. Likewise, AlmaLinux was
started by CloudLinux, another company that was involved in the CentOS project. These
RHEL-like distributions are sometimes referred to as “Enterprise Linux” or EL.

8

https://www.redhat.com
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://getfedora.org
https://www.centos.org
https://rockylinux.org
https://almalinux.org

2.4. The Debian family of distributions

Distinctive features of the Red Hat family of distributions are:

• The use of the RPM package format (Red Hat Package Management) and the dnf pack-
age manager

• The systemd init system
• The firewalld firewall management tool
• The SELinux security framework
• The Anaconda installer
• The Cockpitweb-based management interface
• Their own container runtimes, runc and crun andmanagement toolspodman and buil-
dah (instead of Docker)

Oracle Enterprise Linux is Oracle’s commercial Linux distribution, put in the market as a di-
rect competitor to RHEL. Scientific Linux was a community driven project that was used
by scientific institutions like CERN and Fermilab, but it was discontinued in 2021. The final
maintenance window for Scientific Linux 7 is June 30, 2024. After that, users are advised to
migrate to AlmaLinux. The Amazon Linux distribution is a RHEL-like distribution that is used
as the default operating system for AmazonWeb Services (AWS) EC2 instances.

2.4. The Debian family of distributions

There is no company behind Debian. Instead there are thousands of well organised devel-
opers that elect a Debian Project Leader every two years. Debian is seen as one of the most
stable Linux distributions. It is also the basis of every release of the well-known Ubuntu (see
below). Debian comes in three versions: stable, testing and unstable. Every Debian release
is named after a character in the movie Toy Story.

Canonical, a company founded by South African entrepreneur Mark Shuttleworth, started
sending out free compact discs with Ubuntu Linux in 2004 and quickly became popular for
home users (many switching from Microsoft Windows). Canonical wants Ubuntu to be an
easy to usegraphical Linuxdesktopwithout need to ever see a command line. Of course they
also want to make a profit by selling commercial support for Ubuntu. Ubuntu is known for
their Long Term Support (LTS) releases, which are supported for 5 years (or 10 years for a fee).
Intermediate releases come out every 6months (in April and October) and are supported for
9 months. Releases are named after the year andmonth of the release, e.g. 19.10 for October
2019. LTS releases come out every even year in April, e.g. 22.04 and 24.04. Canonical also
has the reputation of going their own way and doing things differently from the rest of the
Linux community. For example, they developed their own init system, Upstart (which was
later abandoned and replacedby systemd), and their owndisplay server, Mir (whichwas later
replaced byWayland), a desktop environment (Unity, later replacedwith Gnome), etc. Some
of these decisions were controversial and have led to a lot of criticism, but the strength of
the open source community lies precisely in the freedom to make different choices, which
is a driver for innovation.

Distinctive features of the Debian family of distributions are:

• The use of the deb package format and the apt packagemanager (Advanced Package
Tool)

• The systemd init system
• The ufw firewall management tool
• The AppArmor security framework
• The Debian-installer installer
• The Docker container runtime and management tools

LinuxMint, Edubuntuandmanyother distributionswith anameendingon -buntu arebased
on Ubuntu and thus share a lot with Debian. Kali Linux is another Debian-based distribution
that is specifically designed for digital forensics and penetration testing. It comes with a lot
of pre-installed tools for hacking and security testing. Kali is not suitable for daily use as a

9

https://www.oracle.com/linux/
https://www.scientificlinux.org
https://aws.amazon.com/amazon-linux-2/
https://www.debian.org
https://ubuntu.com
https://linuxmint.com
https://www.kali.org

2. distributions

desktop operating system, but it is very popular among security professionals and hobby-
ists. The popular mini-computer Raspberry Pi has its own Debian-based distribution called
Raspberry Pi OS.

2.5. Notable “independent” distributions

Apart from the two big families of distributions, i.e. Red Hat and Debian families, there are
many other distributions that are not based on either of these. Some of the most notable
ones are:

• Alpine Linux: an independent non-commercial, general purpose distribution with a fo-
cus on security and simplicity. Alpine Linux is very small and lightweight, and it is often
used in containers.

• Arch Linux: another independent general purpose distribution. Arch Linux is a rolling
release distribution, whichmeans that you install it once and then continuously update
individual packages when new versions become available. The distribution itself does
not have an overarching (see what I did there?) release cycle. Arch has its own package
manager, Pacman. One of the most notable features of Arch Linux is its outstanding
documentation, which is very extensive andwell written and even quite useful for users
of other distributions. Installing Arch Linux is not as straightforward as installing other
distributions: you start with aminimal systemwith the kernel and a shell, and then you
build up the system to your own liking. This is not for novice users, but it is a great way
to learn about the inner workings of a Linux system.

• openSUSE: a general purpose community drivendistribution that is sponsoredby SUSE,
a German company that also offers commercial support for derivative distro’s SUSE
Linux Enterprise Server (SLES) andDesktop (SLED). openSUSE is known for its YaST (Yet
another Setup Tool) configuration tool, which is a central place to configure many as-
pects of the system. openSUSE comes in two flavours: Leap and Tumbleweed. Leap is
a regular release distribution with a fixed release cycle, while Tumbleweed is a rolling
release distribution.

2.6. Which to choose?

If you ask 10 people what the best Linux distribution is, chances are that you will get 20
different answers. Posting it as a question on a forum may lead to a discussion that goes
on for weeks or months, if not years. You will get a lot of passionate and sometimes even
insightful opinions, but in the end you won’t be none the wiser. So giving good advice that
is universally applicable is very hard, indeed.

Below are some very personal opinions (albeit informed by experience) on some of themost
popular Linux distributions. Keep in mind that any of the below Linux distributions can be a
stable server and a nice graphical desktop client.

Distribution
name Reason(s) for using

AlmaLinux You want a stable Red Hat-like server OS without commercial support
contract.

Arch You want to know how Linux really works and want to take your time
to learn.

Debian An excellent choice for servers, laptops, and any other device.
Fedora You want a Red Hat-like OS on your laptop/desktop.
Kali You want a pointy-clicky hacking interface.

10

https://www.raspberrypi.org/software/operating-systems/
https://www.alpinelinux.org
https://archlinux.org
https://www.opensuse.org
https://www.suse.com/products/server/
https://www.suse.com/products/server/
https://www.suse.com/products/desktop/

2.6. Which to choose?

Distribution
name Reason(s) for using

Linux Mint You want a personal graphical desktop to play movies, music and
games.

RHEL You are a manager and need good commercial support.
RockyLinux You want a stable Red Hat-like server OS without commercial support

contract.
Ubuntu
Desktop

Very popular, suited for beginners and based on Debian.

Ubuntu Server (LTS particulary) You want a Debian-like OS with commercial support.

When you are new to Linux, and are looking for a distributionwith a graphical desktop and all
the tools that youneedas adaily driver, checkout the latest LinuxMint (suitable for computer
novices and experienced computer users alike) or Fedora (recommended for power users
and IT professionals).

If you only want to practice the Linux command line, or are interested in the use of Linux as
a server, then install a VM with the latest release of either Debian stable and/or AlmaLinux
(without graphical interface)1.

As you gain experience, you can try out other distributions and see what you like best. Good
luck on your journey and enjoy the ride!

1Remark that this advice was originally written in 2015 and basically still holds in 2024. The only amendment is
that AlmaLinux has taken the place of CentOS as a recommendation for a server OS.

11

3. licensing

(Written by Ywein Van den Brande, with contributions by: Paul Cobbaut, https:
//github.com/paulcobbaut/)

This chapter briefly explains the different licenses used for distributing operating systems
software.

Many thanks go to Ywein Van den Brande for writing most of this chapter.

Ywein is an attorney at law, co-author of The International FOSS Law Book and author of
Praktijkboek Informaticarecht (in Dutch).

http:^/ifosslawbook.org
http:^/^^w.crealaw.eu

3.1. about software licenses

There are two predominant software paradigms: Free and Open Source Software (FOSS)
and proprietary software. The criteria for differentiation between these two approaches
is based on control over the software. With proprietary software, control tends to liemore
with the vendor, while with Free and Open Source Software it tends to bemore weighted
towards the end user. But even though the paradigms differ, they use the same copyright
laws to reach and enforce their goals. From a legal perspective, Free and Open Source
Software can be considered as software to which users generally receive more rights via
their license agreement than they would have with a proprietary software license, yet
the underlying license mechanisms are the same.

Legal theory states that the author of FOSS, contrary to the author of public domain soft-
ware, has in no way whatsoever given up his rights on his work. FOSS supports on the rights
of the author (the copyright) to impose FOSS license conditions. The FOSS license condi-
tions need to be respected by the user in the same way as proprietary license conditions.
Always check your license carefully before you use third party software.

Examples of proprietary software are AIX from IBM, HP-UX from HP and Oracle Database
11g. You are not authorised to install or use this software without paying a licensing fee.
You are not authorised to distribute copies and you are not authorised to modify the closed
source code.

13

https://github.com/paulcobbaut/
https://github.com/paulcobbaut/

3. licensing

3.2. public domain software and freeware

Software that is original in the sense that it is an intellectual creation of the author benefits
copyright protection. Non-original software does not come into consideration for copy-
right protection and can, in principle, be used freely.

Public domain software is considered as software to which the author has given up all rights
and on which nobody is able to enforce any rights. This software can be used, reproduced or
executed freely, without permission or the payment of a fee. Public domain software can in
certain cases even be presented by third parties as own work, and bymodifying the original
work, third parties can take certain versions of the public domain software out of the public
domain again.

Freeware is not public domain software or FOSS. It is proprietary software that you can use
without paying a license cost. However, the often strict license terms need to be respected.

Examples of freeware are Adobe Reader, Skype and Command and Conquer: Tiberian Sun
(this game was sold as proprietary in 1999 and is since 2011 available as freeware).

3.3. Free Software or Open Source Software

Both the Free Software (translates to vrije software in Dutch and to Logiciel Libre in
French) and the Open Source Softwaremovement largely pursue similar goals and endorse
similar software licenses. But historically, there has been some perception of differentiation
due to different emphases. Where the Free Software movement focuses on the rights
(the four freedoms) which Free Software provides to its users, the Open Source Software
movement points to itsOpenSourceDefinition and the advantages of peer-to-peer software
development.

Recently, the term free and open source software or FOSS has arisen as a neutral alternative.
A lesser-used variant is free/libre/open source software (FLOSS), which uses libre to clarify
the meaning of free as in freedom rather than as in at no charge.

Examples of free software are gcc, MySQL and gimp.

Detailed information about the four freedoms can be found here:

http:^/^^w.gnu.org/philosophy/free-sw.html

The open source definition can be found at:

http:^/^^w.opensource.org/docs/osd

The above definition is based on the Debian Free Software Guidelines available here:

http:^/^^w.debian.org/social_contract#guidelines

14

3.4. GNU General Public License

3.4. GNU General Public License

More and more software is being released under the GNU GPL (in 2006 Java was released
under the GPL). This license (v2 and v3) is the main license endorsed by the Free Software
Foundation. It’s main characteristic is the copyleft principle. This means that everyone
in the chain of consecutive users, in return for the right of use that is assigned, needs to dis-
tribute the improvements hemakes to the software andhis derivativeworks under the same
conditions to other users, if he chooses to distribute such improvements or derivative works.
In other words, software which incorporates GNU GPL software, needs to be distributed in
turn as GNU GPL software (or compatible, see below). It is not possible to incorporate copy-
right protected parts of GNU GPL software in a proprietary licensed work. The GPL has been
upheld in court.

3.5. using GPLv3 software

You can use GPLv3 software almost without any conditions. If you solely run the software
you even don’t have to accept the terms of the GPLv3. However, any other use - such as
modifying or distributing the software - implies acceptance.

In case you use the software internally (including over a network), you may modify the soft-
ware without being obliged to distribute your modification. You may hire third parties to
work on the software exclusively for you and under your direction and control. But if you
modify the software and use it otherwise than merely internally, this will be considered as
distribution. You must distribute your modifications under GPLv3 (the copyleft principle).
Several more obligations apply if you distribute GPLv3 software. Check the GPLv3 license
carefully.

You create output with GPLv3 software: The GPLv3 does not automatically apply to the out-
put.

3.6. BSD license

There are several versions of the original Berkeley Distribution License. The most common
one is the 3-clause license (”New BSD License” or ”Modified BSD License”).

This is a permissive free software license. The license placesminimal restrictions on how the
software can be redistributed. This is in contrast to copyleft licenses such as the GPLv. 3
discussed above, which have a copyleft mechanism.

This difference is of less importance when you merely use the software, but kicks in when
you start redistributing verbatim copies of the software or your ownmodified versions.

3.7. other licenses

FOSS or not, there are many kind of licenses on software. You should read and understand
them before using any software.

15

3. licensing

3.8. combination of software licenses

When you use several sources or wishes to redistribute your software under a different li-
cense, you need to verify whether all licenses are compatible. Some FOSS licenses (such
as BSD) are compatible with proprietary licenses, but most are not. If you detect a license
incompatibility, you must contact the author to negotiate different license conditions or re-
frain from using the incompatible software.

16

Part II.

command structure

17

4. commands and arguments

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This chapter introduces you to shell expansion by taking a close look at commands and
arguments. Knowing shell expansion is important becausemany commands on your Linux
system are processed and most likely changed by the shell before they are executed.
The command line interface or shell used on most Linux systems is called bash, which
stands for Bourne again shell. The bash shell incorporates features from sh (the original
Bourne shell), csh (the C shell), and ksh (the Korn shell).

This chapter frequently uses the echo command to demonstrate shell features. The echo
command is very simple: it echoes the input that it receives.

student@linux:~$ echo Burtonville
Burtonville
student@linux:~$ echo Smurfs are blue
Smurfs are blue

4.1. arguments

One of the primary features of a shell is to perform a command line scan. When you enter a
command at the shell’s command prompt and press the enter key, then the shell will start
scanning that line, cutting it up in arguments. While scanning the line, the shell may make
many changes to the arguments you typed.

This process is called shell expansion. When the shell has finished scanning andmodifying
that line, then it will be executed.

4.2. white space removal

Parts that are separated by one or more consecutive white spaces (or tabs) are considered
separate arguments, any white space is removed. The first argument is the command to be
executed, the other arguments are given to the command. The shell effectively cuts your
command into one or more arguments.

This explains why the following four different command lines are the same after shell ex-
pansion.

[student@linux ~]$ echo Hello World
Hello World
[student@linux ~]$ echo Hello World
Hello World
[student@linux ~]$ echo Hello World
Hello World
[student@linux ~]$ echo Hello World
Hello World

19

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

4. commands and arguments

The echo command will display each argument it receives from the shell. The echo com-
mand will also add a new white space between the arguments it received.

4.3. single quotes

You can prevent the removal of white spaces by quoting the spaces. The contents of the
quoted string are considered as one argument. In the screenshot below the echo receives
only one argument.

[student@linux ~]$ echo 'A line with single quotes'
A line with single quotes
[student@linux ~]$

4.4. double quotes

You can also prevent the removal of white spaces by double quoting the spaces. Same as
above, echo only receives one argument.

[student@linux ~]$ echo "A line with double quotes"
A line with double quotes
[student@linux ~]$

Later in this book, when discussing variables we will see important differences between
single and double quotes.

4.5. echo and quotes

Quoted lines can include special escaped characters recognised by the echo command
(when using echo -e). The screenshot below shows how to use \n for a newline and \t for
a tab (usually eight white spaces).

[student@linux ~]$ echo -e "A line with \na newline"
A line with
a newline
[student@linux ~]$ echo -e 'A line with \na newline'
A line with
a newline
[student@linux ~]$ echo -e "A line with \ta tab"
A line with a tab
[student@linux ~]$ echo -e 'A line with \ta tab'
A line with a tab
[student@linux ~]$

The echo command can generate more than white spaces, tabs and newlines. Look in the
man page for a list of options.

20

4.6. commands

4.6. commands

4.6.1. external or builtin commands ?

Not all commands are external to the shell, some are builtin. External commands are pro-
grams that have their own binary and reside somewhere in the file system. Many external
commands are located in /bin or /sbin. Builtin commands are an integral part of the shell
program itself.

4.6.2. type

To find out whether a command given to the shell will be executed as an external command
or as a builtin command, use the type command.

student@linux:~$ type cd
cd is a shell builtin
student@linux:~$ type cat
cat is /bin/cat

As you can see, the cd command is builtin and the cat command is external.

You can also use this command to show you whether the command is aliased or not.

student@linux:~$ type ls
ls is aliased to `ls --color=auto'

4.6.3. running external commands

Some commands have both builtin and external versions. When one of these commands is
executed, the builtin version takes priority. To run the external version, you must enter the
full path to the command.

student@linux:~$ type -a echo
echo is a shell builtin
echo is /bin/echo
student@linux:~$ /bin/echo Running the external echo command^^.
Running the external echo command^^.

4.6.4. which

The which commandwill search for binaries in the $PATH environment variable (variableswill
be explained later). In the screenshot below, it is determined that cd is builtin, and ls, cp,
rm, mv, mkdir, pwd, and which are external commands.

[root@linux ~^# which cp ls cd mkdir pwd
/bin/cp
/bin/ls
/usr/bin/which: no cd in (/usr/kerberos/sbin:/usr/kerberos/bin:^^.
/bin/mkdir
/bin/pwd

21

4. commands and arguments

4.7. aliases

4.7.1. create an alias

The shell allows you to create aliases. Aliases are oftenused to create an easier to remember
name for an existing command or to easily supply parameters.

[student@linux ~]$ cat count.txt
one
two
three
[student@linux ~]$ alias dog=tac
[student@linux ~]$ dog count.txt
three
two
one

4.7.2. abbreviate commands

An alias can also be useful to abbreviate an existing command.

student@linux:~$ alias ll='ls -lh --color=auto'
student@linux:~$ alias c='clear'
student@linux:~$

4.7.3. default options

Aliases can be used to supply commands with default options. The example below shows
how to set the -i option default when typing rm.

[student@linux ~]$ rm -i winter.txt
rm: remove regular file `winter.txt'? no
[student@linux ~]$ rm winter.txt
[student@linux ~]$ ls winter.txt
ls: winter.txt: No such file or directory
[student@linux ~]$ touch winter.txt
[student@linux ~]$ alias rm='rm -i'
[student@linux ~]$ rm winter.txt
rm: remove regular empty file `winter.txt'? no
[student@linux ~]$

Somedistributions enable default aliases to protect users fromaccidentally erasing files (’rm
-i’, ’mv -i’, ’cp -i’)

4.7.4. viewing aliases

You can provide one or more aliases as arguments to the alias command to get their defi-
nitions. Providing no arguments gives a complete list of current aliases.

student@linux:~$ alias c ll
alias c='clear'
alias ll='ls -lh --color=auto'

22

4.8. displaying shell expansion

4.7.5. unalias

You can undo an alias with the unalias command.

[student@linux ~]$ which rm
/bin/rm
[student@linux ~]$ alias rm='rm -i'
[student@linux ~]$ which rm
alias rm='rm -i'

/bin/rm
[student@linux ~]$ unalias rm
[student@linux ~]$ which rm
/bin/rm
[student@linux ~]$

4.8. displaying shell expansion

You can display shell expansion with set -x, and stop displaying it with set +x. You might
want to use this further on in this course, or when in doubt about exactly what the shell is
doing with your command.

[student@linux ~]$ set -x
^+ echo -ne '\033]0;student@linux:~\007'
[student@linux ~]$ echo $USER
+ echo paul
paul
^+ echo -ne '\033]0;student@linux:~\007'
[student@linux ~]$ echo \$USER
+ echo '$USER'
$USER
^+ echo -ne '\033]0;student@linux:~\007'
[student@linux ~]$ set +x
+ set +x
[student@linux ~]$ echo $USER
paul

4.9. practice: commands and arguments

1. Howmany arguments are in this line (not counting the command itself).

touch '/etc/cron/cron.allow' 'file 42.txt' "file 33.txt"

2. Is tac a shell builtin command ?

3. Is there an existing alias for rm ?
4. Read the man page of rm, make sure you understand the -i option of rm. Create and
remove a file to test the -i option.
5. Execute: alias rm='rm -i' . Test your alias with a test file. Does this work as expected
?

6. List all current aliases.

7a. Create an alias called ’city’ that echoes your hometown.

23

4. commands and arguments

7b. Use your alias to test that it works.

8. Execute set -x to display shell expansion for every command.

9. Test the functionality of set -x by executing your city and rm aliases.
10 Execute set +x to stop displaying shell expansion.

11. Remove your city alias.

12. What is the location of the cat and the passwd commands ?

13. Explain the difference between the following commands:

echo

/bin/echo

14. Explain the difference between the following commands:

echo Hello

echo -n Hello

15. Display A B Cwith two spaces between B and C.

(optional)16. Complete the following command (do not use spaces) to display exactly the
following output:

4+4 =8
10+14 =24

17. Use echo to display the following exactly:

^?\\

Find two solutions with single quotes, two with double quotes and one without quotes (and
say thank you to René and Darioush from Google for this extra).

18. Use one echo command to display three words on three lines.

4.10. solution: commands and arguments

1. Howmany arguments are in this line (not counting the command itself).

touch '/etc/cron/cron.allow' 'file 42.txt' "file 33.txt"

answer: three

2. Is tac a shell builtin command ?

type tac

3. Is there an existing alias for rm ?

alias rm

24

4.10. solution: commands and arguments

4. Read the man page of rm, make sure you understand the -i option of rm. Create and
remove a file to test the -i option.

man rm

touch testfile

rm -i testfile

5. Execute: alias rm='rm -i' . Test your alias with a test file. Does this work as expected
?

touch testfile

rm testfile (should ask for confirmation)

6. List all current aliases.

alias

7a. Create an alias called ’city’ that echoes your hometown.

alias city='echo Antwerp'

7b. Use your alias to test that it works.

city (it should display Antwerp)

8. Execute set -x to display shell expansion for every command.

set -x

9. Test the functionality of set -x by executing your city and rm aliases.

shell should display the resolved aliases and then execute the command:
student@linux:~$ set -x
student@linux:~$ city
+ echo antwerp
antwerp

10 Execute set +x to stop displaying shell expansion.

set +x

11. Remove your city alias.

unalias city

12. What is the location of the cat and the passwd commands ?

which cat (probably /bin/cat)

which passwd (probably /usr/bin/passwd)

25

4. commands and arguments

13. Explain the difference between the following commands:

echo

/bin/echo

The echo command will be interpreted by the shell as the built-in echo command. The
/bin/echo command will make the shell execute the echo binary located in the /bin di-
rectory.

14. Explain the difference between the following commands:

echo Hello

echo -n Hello

The -n option of the echo command will prevent echo from echoing a trailing newline. echo
Hellowill echo six characters in total, echo -n hello only echoes five characters.
(The -n option might not work in the Korn shell.)

15. Display A B Cwith two spaces between B and C.

echo "A B C"

16. Complete the following command (do not use spaces) to display exactly the following
output:

4+4 =8
10+14 =24

The solution is to use tabs with \t.

echo -e "4+4\t=8" ; echo -e "10+14\t=24"

17. Use echo to display the following exactly:

^?\\
echo '^?\\'
echo -e '^?\\\\'
echo "^?\\\\"
echo -e "^?\\\\\\"
echo ^?\\\\

Find two solutions with single quotes, two with double quotes and one without quotes (and
say thank you to René and Darioush from Google for this extra).

18. Use one echo command to display three words on three lines.

echo -e "one \ntwo \nthree"

26

5. shell history

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

The shell makes it easy for us to repeat commands, this chapter explains how.

5.1. repeating the last command

To repeat the last command in bash, type ^!. This is pronounced as bang bang.

student@linux:~/test42$ echo this will be repeated > file42.txt
student@linux:~/test42$ ^!
echo this will be repeated > file42.txt
student@linux:~/test42$

5.2. repeating other commands

You can repeat other commands using one bang followed by one or more characters. The
shell will repeat the last command that started with those characters.

student@linux:~/test42$ touch file42
student@linux:~/test42$ cat file42
student@linux:~/test42$!to
touch file42
student@linux:~/test42$

5.3. history

To see older commands, use history to display the shell command history (or use history
n to see the last n commands).

student@linux:~/test$ history 10
38 mkdir test
39 cd test
40 touch file1
41 echo hello > file2
42 echo It is very cold today > winter.txt
43 ls
44 ls -l
45 cp winter.txt summer.txt
46 ls -l
47 history 10

27

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

5. shell history

5.4. !n

When typing ! followed by the number preceding the command you want repeated, then
the shell will echo the command and execute it.

student@linux:~/test$!43
ls
file1 file2 summer.txt winter.txt

5.5. Ctrl-r

Another option is to use ctrl-r to search in the history. In the screenshot below i only typed
ctrl-r followedby four characters apti and it finds the last command containing these four
consecutive characters.

student@linux:~$
(reverse-i-search)`apti': sudo aptitude install screen

5.6. $HISTSIZE

The $HISTSIZE variable determines the number of commands that will be remembered in
your current environment. Most distributions default this variable to 500 or 1000.

student@linux:~$ echo $HISTSIZE
500

You can change it to any value you like.

student@linux:~$ HISTSIZE=15000
student@linux:~$ echo $HISTSIZE
15000

5.7. $HISTFILE

The $HISTFILE variable points to the file that contains your history. The bash shell defaults
this value to ~/.bash_history.

student@linux:~$ echo $HISTFILE
/home/paul/.bash_history

A session history is saved to this file when you exit the session!

Closing a gnome-terminal with the mouse, or typing reboot as root will NOT save your ter-
minal’s history.

28

5.8. $HISTFILESIZE

5.8. $HISTFILESIZE

The number of commands kept in your history file can be set using $HISTFILESIZE.

student@linux:~$ echo $HISTFILESIZE
15000

5.9. prevent recording a command

You can prevent a command from being recorded in history using a space prefix.

student@linux:~/github$ echo abc
abc
student@linux:~/github$ echo def
def
student@linux:~/github$ echo ghi
ghi
student@linux:~/github$ history 3
9501 echo abc
9502 echo ghi
9503 history 3

5.10. (optional)regular expressions

It is possible to use regular expressions when using the bang to repeat commands. The
screenshot below switches 1 into 2.

student@linux:~/test$ cat file1
student@linux:~/test$!c:s/1/2
cat file2
hello
student@linux:~/test$

5.11. (optional) Korn shell history

Repeating a command in the Korn shell is very similar. The Korn shell also has the history
command, but uses the letter r to recall lines from history.

This screenshot shows the history command. Note the different meaning of the parame-
ter.

$ history 17
17 clear
18 echo hoi
19 history 12
20 echo world
21 history 17

Repeating with r can be combined with the line numbers given by the history command,
or with the first few letters of the command.

29

5. shell history

$ r e
echo world
world
$ cd /etc
$ r
cd /etc
$

5.12. practice: shell history

1. Issue the command echo The answer to the meaning of life, the universe and
everything is 42.

2. Repeat the previous command using only two characters (there are two solutions!)

3. Display the last 5 commands you typed.

4. Issue the long echo from question 1 again, using the line numbers you received from the
command in question 3.

5. Howmany commands can be kept in memory for your current shell session ?

6. Where are these commands stored when exiting the shell ?

7. Howmany commands can bewritten to the history filewhen exiting your current shell
session ?

8. Make sure your current bash shell remembers the next 5000 commands you type.

9. Open more than one console (by press Ctrl-shift-t in gnome-terminal, or by opening an
extra putty.exe in MS Windows) with the same user account. When is command history
written to the history file ?

5.13. solution: shell history

1. Issue the command echo The answer to the meaning of life, the universe and
everything is 42.

echo The answer to the meaning of life, the universe and everything is 42

2. Repeat the previous command using only two characters (there are two solutions!)

^!
OR
!e

3. Display the last 5 commands you typed.

student@linux:~$ history 5
52 ls -l
53 ls
54 df -h | grep sda
55 echo The answer to the meaning of life, the universe and everything is 42
56 history 5

30

5.13. solution: shell history

You will receive different line numbers.

4. Issue the long echo from question 1 again, using the line numbers you received from the
command in question 3.

student@linux:~$!55
echo The answer to the meaning of life, the universe and everything is 42
The answer to the meaning of life, the universe and everything is 42

5. Howmany commands can be kept in memory for your current shell session ?

echo $HISTSIZE

6. Where are these commands stored when exiting the shell ?

echo $HISTFILE

7. Howmany commands can bewritten to the history filewhen exiting your current shell
session ?

echo $HISTFILESIZE

8. Make sure your current bash shell remembers the next 5000 commands you type.

HISTSIZE=5000

9. Open more than one console (by press Ctrl-shift-t in gnome-terminal, or by opening an
extra putty.exe in MS Windows) with the same user account. When is command history
written to the history file ?

when you type exit

31

Part III.

variables

33

6. shell variables

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

In this chapter we learn to manage environment variables in the shell. These variables
are often needed by applications.

6.1. $ dollar sign

Another important character interpreted by the shell is the dollar sign $. The shell will look
for an environment variable named like the string following the dollar sign and replace
it with the value of the variable (or with nothing if the variable does not exist).

These are some examples using $HOSTNAME, $USER, $UID, $SHELL, and $HOME.

[student@linux ~]$ echo This is the $SHELL shell
This is the /bin/bash shell
[student@linux ~]$ echo This is $SHELL on computer $HOSTNAME
This is /bin/bash on computer RHELv8u3.localdomain
[student@linux ~]$ echo The userid of $USER is $UID
The userid of paul is 500
[student@linux ~]$ echo My homedir is $HOME
My homedir is /home/paul

6.2. case sensitive

This example shows that shell variables are case sensitive!

[student@linux ~]$ echo Hello $USER
Hello paul
[student@linux ~]$ echo Hello $user
Hello

6.3. creating variables

This example creates the variable $MyVar and sets its value. It then uses echo to verify the
value.

[student@linux gen]$ MyVar=555
[student@linux gen]$ echo $MyVar
555
[student@linux gen]$

35

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

6. shell variables

6.4. quotes

Notice that double quotes still allow the parsing of variables, whereas single quotes prevent
this.

[student@linux ~]$ MyVar=555
[student@linux ~]$ echo $MyVar
555
[student@linux ~]$ echo "$MyVar"
555
[student@linux ~]$ echo '$MyVar'
$MyVar

The bash shell will replace variables with their value in double quoted lines, but not in single
quoted lines.

student@linux:~$ city=Burtonville
student@linux:~$ echo "We are in $city today."
We are in Burtonville today.
student@linux:~$ echo 'We are in $city today.'
We are in $city today.

6.5. set

You can use the set command to display a list of environment variables. On Ubuntu and
Debian systems, the set command will also list shell functions after the shell variables. Use
set | more to see the variables then.

6.6. unset

Use the unset command to remove a variable from your shell environment.

[student@linux ~]$ MyVar=8472
[student@linux ~]$ echo $MyVar
8472
[student@linux ~]$ unset MyVar
[student@linux ~]$ echo $MyVar

[student@linux ~]$

6.7. $PS1

The $PS1 variable determines your shell prompt. You can use backslash escaped special
characters like \u for the username or \w for the working directory. The bashmanual has a
complete reference.

In this example we change the value of $PS1 a couple of times.

36

6.8. $PATH

student@linux:~$ PS1=prompt
prompt
promptPS1='prompt '
prompt
prompt PS1='> '
>
> PS1='\u@\h$ '
student@linux$
student@linux$ PS1='\u@\h:\W$'
student@linux:~$

To avoid unrecoverable mistakes, you can set normal user prompts to green and the root
prompt to red. Add the following to your .bashrc for a green user prompt:

color prompt by paul
RED='\[\033[01;31m\]'
WHITE='\[\033[01;00m\]'
GREEN='\[\033[01;32m\]'
BLUE='\[\033[01;34m\]'
export PS1="${debian_chroot:+($debian_chroot)}$GREEN\u$WHITE@$BLUE\h$WHITE\w\$ "

6.8. $PATH

The $PATH variable is determines where the shell is looking for commands to execute (unless
the command is builtin or aliased). This variable contains a list of directories, separated by
colons.

[[student@linux ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:

The shell will not look in the current directory for commands to execute! (Looking for exe-
cutables in the current directory provided an easy way to hack PC-DOS computers). If you
want the shell to look in the current directory, then add a . at the end of your $PATH.

[student@linux ~]$ PATH=$PATH:.
[student@linux ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:.
[student@linux ~]$

Your path might be different when using su instead of su - because the latter will take on
the environment of the target user. The root user typically has /sbin directories added to
the $PATH variable.

[student@linux ~]$ su
Password:
[root@linux paul^# echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
[root@linux paul^# exit
[student@linux ~]$ su -
Password:
[root@linux ~^# echo $PATH
/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:
[root@linux ~^#

37

6. shell variables

6.9. env

The env command without options will display a list of exported variables. The differ-
encewith setwith options is that set lists all variables, including those not exported to child
shells.

But env can also be used to start a clean shell (a shell without any inherited environment).
The env -i command clears the environment for the subshell.

Notice in this screenshot that bashwill set the $SHELL variable on startup.

[student@linux ~]$ bash -c 'echo $SHELL $HOME $USER'
/bin/bash /home/paul paul
[student@linux ~]$ env -i bash -c 'echo $SHELL $HOME $USER'
/bin/bash
[student@linux ~]$

You can use the env command to set the $LANG, or any other, variable for just one instance of
bash with one command. The example below uses this to show the influence of the $LANG
variable on file globbing (see the chapter on file globbing).

[student@linux test]$ env LANG=C bash -c 'ls File[a-z]'
Filea Fileb
[student@linux test]$ env LANG=en_US.UTF-8 bash -c 'ls File[a-z]'
Filea FileA Fileb FileB
[student@linux test]$

6.10. export

You can export shell variables to other shells with the export command. This will export the
variable to child shells.

[student@linux ~]$ var3=three
[student@linux ~]$ var4=four
[student@linux ~]$ export var4
[student@linux ~]$ echo $var3 $var4
three four
[student@linux ~]$ bash
[student@linux ~]$ echo $var3 $var4
four

But it will not export to the parent shell (previous screenshot continued).

[student@linux ~]$ export var5=five
[student@linux ~]$ echo $var3 $var4 $var5
four five
[student@linux ~]$ exit
exit
[student@linux ~]$ echo $var3 $var4 $var5
three four
[student@linux ~]$

38

6.11. delineate variables

6.11. delineate variables

Until now, wehave seen that bash interprets a variable starting fromadollar sign, continuing
until thefirst occurrenceof a non-alphanumeric character that is not anunderscore. In some
situations, this can be a problem. This issue can be resolved with curly braces like in this
example.

[student@linux ~]$ prefix=Super
[student@linux ~]$ echo Hello $prefixman and $prefixgirl
Hello and
[student@linux ~]$ echo Hello ${prefix}man and ${prefix}girl
Hello Superman and Supergirl
[student@linux ~]$

6.12. unbound variables

The example below tries to display the value of the $MyVar variable, but it fails because the
variable does not exist. By default the shell will display nothing when a variable is unbound
(does not exist).

[student@linux gen]$ echo $MyVar

[student@linux gen]$

There is, however, the nounset shell option that you can use to generate an error when a
variable does not exist.

student@linux:~$ set -u
student@linux:~$ echo $Myvar
bash: Myvar: unbound variable
student@linux:~$ set +u
student@linux:~$ echo $Myvar

student@linux:~$

In the bash shell set -u is identical to set -o nounset and likewise set +u is identical to
set +o nounset.

6.13. practice: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)

2. Create a variable answerwith a value of 42.
3. Copy the value of $LANG to $MyLANG.

4. List all current shell variables.

5. List all exported shell variables.

6. Do the env and set commands display your variable ?

6. Destroy your answer variable.
7. Create two variables, and export one of them.

39

6. shell variables

8. Display the exported variable in an interactive child shell.

9. Create a variable, give it the value ’Dumb’, create another variable with value ’do’. Use echo
and the two variables to echo Dumbledore.

10. Find the list of backslash escaped characters in themanual of bash. Add the time to your
PS1 prompt.

6.14. solution: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)

echo Hello $USER

2. Create a variable answerwith a value of 42.

answer=42

3. Copy the value of $LANG to $MyLANG.

MyLANG=$LANG

4. List all current shell variables.

set

set|more on Ubuntu/Debian

5. List all exported shell variables.

env
export
declare -x

6. Do the env and set commands display your variable ?

env | more
set | more

6. Destroy your answer variable.

unset answer

7. Create two variables, and export one of them.

var1=1; export var2=2

8. Display the exported variable in an interactive child shell.

bash
echo $var2

40

6.14. solution: shell variables

9. Create a variable, give it the value ’Dumb’, create another variable with value ’do’. Use echo
and the two variables to echo Dumbledore.

varx=Dumb; vary=do

echo ${varx}le${vary}re
solution by Yves from Dexia : echo $varx'le'$vary're'
solution by Erwin from Telenet : echo "$varx"le"$vary"re

10. Find the list of backslash escaped characters in themanual of bash. Add the time to your
PS1 prompt.

PS1='\t \u@\h \W$ '

41

Part IV.

the semicolon

43

7. control operators

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

In this chapter we put more than one command on the command line using control op-
erators. We also briefly discuss related parameters ($?) and similar special characters(&).

7.1. ; semicolon

You can put two ormore commands on the same line separated by a semicolon ; . The shell
will scan the line until it reaches the semicolon. All the arguments before this semicolon
will be considered a separate command from all the arguments after the semicolon. Both
series will be executed sequentially with the shell waiting for each command to finish before
starting the next one.

[student@linux ~]$ echo Hello
Hello
[student@linux ~]$ echo World
World
[student@linux ~]$ echo Hello ; echo World
Hello
World
[student@linux ~]$

7.2. & ampersand

When a line ends with an ampersand &, the shell will not wait for the command to finish.
You will get your shell prompt back, and the command is executed in background. You will
get a message when this command has finished executing in background.

[student@linux ~]$ sleep 20 &
[1] 7925
[student@linux ~]$
^^.wait 20 seconds^^.
[student@linux ~]$
[1]+ Done sleep 20

The technical explanation of what happens in this case is explained in the chapter about
processes.

45

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

7. control operators

7.3. $? dollar question mark

The exit code of the previous command is stored in the shell variable $?. Actually $? is a shell
parameter and not a variable, since you cannot assign a value to $?.

student@linux:~/test$ touch file1
student@linux:~/test$ echo $?
0
student@linux:~/test$ rm file1
student@linux:~/test$ echo $?
0
student@linux:~/test$ rm file1
rm: cannot remove `file1': No such file or directory
student@linux:~/test$ echo $?
1
student@linux:~/test$

7.4. && double ampersand

The shell will interpret ^& as a logical AND.Whenusing ^& the second command is executed
only if the first one succeeds (returns a zero exit status).

student@linux:~$ echo first ^& echo second
first
second
student@linux:~$ zecho first ^& echo second
-bash: zecho: command not found

Another example of the same logical AND principle. This example starts with a working cd
followed by ls, then a non-working cdwhich is not followed by ls.

[student@linux ~]$ cd gen ^& ls
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[student@linux gen]$ cd gen ^& ls
-bash: cd: gen: No such file or directory

7.5. || double vertical bar

The ^| represents a logical OR. The second command is executed only when the first com-
mand fails (returns a non-zero exit status).

student@linux:~$ echo first ^| echo second ; echo third
first
third
student@linux:~$ zecho first ^| echo second ; echo third
-bash: zecho: command not found
second
third
student@linux:~$

Another example of the same logical OR principle.

46

7.6. combining && and ||

[student@linux ~]$ cd gen ^| ls
[student@linux gen]$ cd gen ^| ls
-bash: cd: gen: No such file or directory
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2

7.6. combining && and ||

You can use this logical AND and logical OR to write an if-then-else structure on the com-
mand line. This example uses echo to display whether the rm command was successful.

student@linux:~/test$ rm file1 ^& echo It worked! ^| echo It failed!
It worked!
student@linux:~/test$ rm file1 ^& echo It worked! ^| echo It failed!
rm: cannot remove `file1': No such file or directory
It failed!
student@linux:~/test$

7.7. # pound sign

Everything written after a pound sign (#) is ignored by the shell. This is useful to write a
shell comment, but has no influence on the command execution or shell expansion.

student@linux:~$ mkdir test # we create a directory
student@linux:~$ cd test ^^^# we enter the directory
student@linux:~/test$ ls # is it empty ?
student@linux:~/test$

7.8. \ escaping special characters

The backslash \ character enables the use of control characters, but without the shell inter-
preting it, this is called escaping characters.

[student@linux ~]$ echo hello \; world
hello ; world
[student@linux ~]$ echo hello\ \ \ world
hello world
[student@linux ~]$ echo escaping \\\ \#\ \&\ \"\ \'
escaping \ # & " '
[student@linux ~]$ echo escaping \\\?*\"\'
escaping \?*"'

7.8.1. end of line backslash

Lines ending in a backslash are continued on the next line. The shell does not interpret the
newline character and will wait on shell expansion and execution of the command line until
a newline without backslash is encountered.

47

7. control operators

[student@linux ~]$ echo This command line \
> is split in three \
> parts
This command line is split in three parts
[student@linux ~]$

7.9. practice: control operators

0. Each question can be answered by one command line!

1. When you type passwd, which file is executed ?

2. What kind of file is that ?

3. Execute the pwd command twice. (remember 0.)

4. Execute ls after cd /etc, but only if cd /etc did not error.

5. Execute cd /etc after cd etc, but only if cd etc fails.
6. Echo it worked when touch test42 works, and echo it failed when the touch failed.
All on one command line as a normal user (not root). Test this line in your home directory
and in /bin/ .
7. Execute sleep 6, what is this command doing ?

8. Execute sleep 200 in background (do not wait for it to finish).

9. Write a command line that executes rm file55. Your command line should print ’success’
if file55 is removed, and print ’failed’ if there was a problem.

(optional)10. Use echo to display ”Hello World with strange’ characters \ * [} ~ \\ .” (including
all quotes)

7.10. solution: control operators

0. Each question can be answered by one command line!

1. When you type passwd, which file is executed ?

which passwd

2. What kind of file is that ?

file /usr/bin/passwd

3. Execute the pwd command twice. (remember 0.)

pwd ; pwd

4. Execute ls after cd /etc, but only if cd /etc did not error.

cd /etc ^& ls

5. Execute cd /etc after cd etc, but only if cd etc fails.

cd etc ^| cd /etc

48

7.10. solution: control operators

6. Echo it worked when touch test42 works, and echo it failed when the touch failed.
All on one command line as a normal user (not root). Test this line in your home directory
and in /bin/ .

student@linux:~$ cd ; touch test42 ^& echo it worked ^| echo it failed
it worked
student@linux:~$ cd /bin; touch test42 ^& echo it worked ^| echo it failed
touch: cannot touch `test42': Permission denied
it failed

7. Execute sleep 6, what is this command doing ?

pausing for six seconds

8. Execute sleep 200 in background (do not wait for it to finish).

sleep 200 &

9. Write a command line that executes rm file55. Your command line should print ’success’
if file55 is removed, and print ’failed’ if there was a problem.

rm file55 ^& echo success ^| echo failed

(optional)10. Use echo to display ”Hello World with strange’ characters \ * [} ~ \\ .” (including
all quotes)

echo \"Hello World with strange\' characters \\ * \[\} \~ \\\\ \. \"

or

echo \""Hello World with strange' characters \ * [} ~ \\ . "\"

49

Part V.

getting help

51

8. man pages

(Written by Paul Cobbaut, https://github.com/paulcobbaut/)

This chapter will explain the use of man pages (also called manual pages) on your Unix or
Linux computer.

You will learn the man command together with related commands like whereis, whatis and
mandb.

Most Unix files and commands have pretty goodman pages to explain their use. Man pages
also come in handy when you are using multiple flavours of Unix or several Linux distribu-
tions since options and parameters sometimes vary.

8.1. man $command

Type man followed by a command (for which youwant help) and start reading. Press q to quit
the manpage. Someman pages contain examples (near the end).

student@linux:~$ man whois
Reformatting whois(1), please wait^^.

8.2. man $configfile

Most configuration files have their ownmanual.

student@linux:~$ man syslog.conf
Reformatting syslog.conf(5), please wait^^.

8.3. man $daemon

This is also true for most daemons (background programs) on your system..

student@linux:~$ man syslogd
Reformatting syslogd(8), please wait^^.

53

https://github.com/paulcobbaut/

8. man pages

8.4. man -k (apropos)

man -k (or apropos) shows a list of man pages containing a string.

student@linux:~$ man -k syslog
lm-syslog-setup (8) - configure laptop mode to switch syslog.conf ^^.
logger (1) - a shell command interface to the syslog(3) ^^.
syslog-facility (8) - Setup and remove LOCALx facility for sysklogd
syslog.conf (5) - syslogd(8) configuration file
syslogd (8) - Linux system logging utilities.
syslogd-listfiles (8) - list system logfiles

8.5. whatis

To see just the description of a manual page, use whatis followed by a string.

student@linux:~$ whatis route
route (8) - show / manipulate the IP routing table

8.6. whereis

The location of a manpage can be revealed with whereis.

student@linux:~$ whereis -m whois
whois: /usr/share/man/man1/whois.1.gz

This file is directly readable by man.

student@linux:~$ man /usr/share/man/man1/whois.1.gz

8.7. man sections

By now youwill have noticed the numbers between the round brackets. man manwill explain
to you that these are section numbers. Executable programs and shell commands reside in
section one.

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games
7 Miscellaneous (including macro packages and conventions), e.g. man(7)
8 System administration commands (usually only for root)
9 Kernel routines [Non standard]

54

8.8. man $section $file

8.8. man $section $file

Therefor, when referring to the man page of the passwd command, you will see it written
as passwd(1); when referring to the passwd file, you will see it written as passwd(5). The
screenshot explains how to open the man page in the correct section.

[student@linux ~]$ man passwd # opens the first manual found
[student@linux ~]$ man 5 passwd # opens a page from section 5

8.9. man man

If you want to knowmore about man, then Read The Fantastic Manual (RTFM).

Unfortunately, manual pages do not have the answer to everything...

student@linux:~$ man woman
No manual entry for woman

8.10. mandb

Should you be convinced that a man page exists, but you can’t access it, then try running
mandb on Debian/Mint.

root@linux:~# mandb
0 man subdirectories contained newer manual pages.
0 manual pages were added.
0 stray cats were added.
0 old database entries were purged.

Or run makewhatis on CentOS/Redhat.

[root@linux ~^# apropos scsi
scsi: nothing appropriate
[root@linux ~^# makewhatis
[root@linux ~^# apropos scsi
hpsa (4) - HP Smart Array SCSI driver
lsscsi (8) - list SCSI devices (or hosts) and their attributes
sd (4) - Driver for SCSI Disk Drives
st (4) - SCSI tape device

55

Part VI.

the file system

57

9. the Linux file tree

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/, Serge Van Ginder-
achter, https://github.com/srgvg/)

This chapter takes a look at the most common directories in the Linux file tree. It also
shows that on Unix everything is a file.

9.1. filesystem hierarchy standard

Many Linux distributions partially follow the Filesystem Hierarchy Standard. The FHSmay
help make more Unix/Linux file system trees conform better in the future. The FHS is avail-
able online at http:^/^^w.pathname.com/fhs/ where we read: ”The filesystem hierarchy
standard has been designed to be used by Unix distribution developers, package develop-
ers, and system implementers. However, it is primarily intended to be a reference and is not
a tutorial on how to manage a Unix filesystem or directory hierarchy.”

9.2. man hier

There are some differences in the filesystems between Linux distributions. For help
about your machine, enter man hier to find information about the file system hierarchy.
This manual will explain the directory structure on your computer.

9.3. the root directory /

All Linux systems have a directory structure that starts at the root directory. The root
directory is represented by a forward slash, like this: /. Everything that exists on your Linux
system can be found below this root directory. Let’s take a brief look at the contents of the
root directory.

[student@linux ~]$ ls /
bin dev home media mnt proc sbin srv tftpboot usr
boot etc lib misc opt root selinux sys tmp var

9.4. binary directories

Binaries are files that contain compiled source code (or machine code). Binaries can be
executed on the computer. Sometimes binaries are called executables.

59

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/srgvg/

9. the Linux file tree

9.4.1. /bin

The /bin directory contains binaries for use by all users. According to the FHS the /bin
directory should contain /bin/cat and /bin/date (among others).

In the screenshot below you see common Unix/Linux commands like cat, cp, cpio, date, dd,
echo, grep, and so on. Many of these will be covered in this book.

student@linux:~$ ls /bin
archdetect egrep mt setupcon
autopartition false mt-gnu sh
bash fgconsole mv sh.distrib
bunzip2 fgrep nano sleep
bzcat fuser nc stralign
bzcmp fusermount nc.traditional stty
bzdiff get_mountoptions netcat su
bzegrep grep netstat sync
bzexe gunzip ntfs-3g sysfs
bzfgrep gzexe ntfs-3g.probe tailf
bzgrep gzip parted_devices tar
bzip2 hostname parted_server tempfile
bzip2recover hw-detect partman touch
bzless ip partman-commit true
bzmore kbd_mode perform_recipe ulockmgr
cat kill pidof umount
^^.

9.4.2. other /bin directories

You can find a /bin subdirectory in many other directories. A user named serena could
put her own programs in /home/serena/bin.

Some applications, often when installed directly from source will put themselves in /opt. A
samba server installation can use /opt/samba/bin to store its binaries.

9.4.3. /sbin

/sbin contains binaries to configure the operating system. Many of the system binaries
require root privilege to perform certain tasks.

Below a screenshot containing system binaries to change the ip address, partition a disk
and create an ext4 file system.

student@linux:~$ ls -l /sbin/ifconfig /sbin/fdisk /sbin/mkfs.ext4
-rwxr-xr-x 1 root root 97172 2011-02-02 09:56 /sbin/fdisk
-rwxr-xr-x 1 root root 65708 2010-07-02 09:27 /sbin/ifconfig
-rwxr-xr-x 5 root root 55140 2010-08-18 18:01 /sbin/mkfs.ext4

9.4.4. /lib

Binaries found in /bin and /sbin often use shared libraries located in /lib. Below is a
screenshot of the partial contents of /lib.

60

9.5. configuration directories

student@linux:~$ ls /lib/libc*
/lib/libc-2.5.so /lib/libcfont.so.0.0.0 /lib/libcom_err.so.2.1
/lib/libcap.so.1 /lib/libcidn-2.5.so /lib/libconsole.so.0
/lib/libcap.so.1.10 /lib/libcidn.so.1 /lib/libconsole.so.0.0.0
/lib/libcfont.so.0 /lib/libcom_err.so.2 /lib/libcrypt-2.5.so

9.4.4.1. /lib/modules

Typically, the Linux kernel loads kernel modules from /lib/modules/$kernel-version/.
This directory is discussed in detail in the Linux kernel chapter.

9.4.4.2. /lib32 and /lib64

We currently are in a transition between 32-bit and 64-bit systems. Therefore, you may
encounter directories named /lib32 and /lib64which clarify the register size used during
compilation time of the libraries. A 64-bit computer may have some 32-bit binaries and li-
braries for compatibility with legacy applications. This screenshot uses the file utility to
demonstrate the difference.

student@linux:~$ file /lib32/libc-2.5.so
/lib32/libc-2.5.so: ELF 32-bit LSB shared object, Intel 80386, \
version 1 (SYSV), for GNU/Linux 2.6.0, stripped
student@linux:~$ file /lib64/libcap.so.1.10
/lib64/libcap.so.1.10: ELF 64-bit LSB shared object, AMD x86-64, \
version 1 (SYSV), stripped

The ELF (Executable and Linkable Format) is used in almost every Unix-like operating
system since System V.

9.4.5. /opt

The purpose of /opt is to store optional software. In many cases this is software from out-
side the distribution repository. You may find an empty /opt directory on many systems.

A largepackagecan install all its files in/bin, /lib, /etc subdirectorieswithin/opt/$packagename/.
If for example the package is called wp, then it installs in /opt/wp, putting binaries in
/opt/wp/bin and manpages in /opt/wp/man.

9.5. configuration directories

9.5.1. /boot

The /boot directory contains all files needed to boot the computer. These files don’t change
very often. On Linux systems you typically find the /boot/grub directory here. /boot/grub
contains /boot/grub/grub.cfg (older systems may still have /boot/grub/grub.conf)
which defines the boot menu that is displayed before the kernel starts.

61

9. the Linux file tree

9.5.2. /etc

All of the machine-specific configuration files should be located in /etc. Historically
/etc stood for etcetera, today people often use the Editable Text Configuration back-
ronym.

Many times the name of a configuration files is the same as the application, daemon, or
protocol with .conf added as the extension.

student@linux:~$ ls /etc^*.conf
/etc/adduser.conf /etc/ld.so.conf /etc/scrollkeeper.conf
/etc/brltty.conf /etc/lftp.conf /etc/sysctl.conf
/etc/ccertificates.conf /etc/libao.conf /etc/syslog.conf
/etc/cvs-cron.conf /etc/logrotate.conf /etc/ucf.conf
/etc/ddclient.conf /etc/ltrace.conf /etc/uniconf.conf
/etc/debconf.conf /etc/mke2fs.conf /etc/updatedb.conf
/etc/deluser.conf /etc/netscsid.conf /etc/usplash.conf
/etc/fdmount.conf /etc/nsswitch.conf /etc/uswsusp.conf
/etc/hdparm.conf /etc/pam.conf /etc/vnc.conf
/etc/host.conf /etc/pnm2ppa.conf /etc/wodim.conf
/etc/inetd.conf /etc/povray.conf /etc/wvdial.conf
/etc/kernel-img.conf /etc/resolv.conf
student@linux:~$

There is much more to be found in /etc.

9.5.2.1. /etc/init.d/

A lot of Unix/Linux distributions have an /etc/init.d directory that contains scripts to start
and stop daemons. This directory could disappear as Linux migrates to systems that replace
the old initway of starting all daemons.

9.5.2.2. /etc/X11/

The graphical display (aka X Window System or just X) is driven by software from the X.org
foundation. The configuration file for your graphical display is /etc/X11/xorg.conf.

9.5.2.3. /etc/skel/

The skeleton directory /etc/skel is copied to the home directory of a newly created user.
It usually contains hidden files like a .bashrc script.

9.5.2.4. /etc/sysconfig/

This directory, which is not mentioned in the FHS, contains a lot of Red Hat Enterprise
Linux configuration files. We will discuss some of them in greater detail. The screenshot
below is the /etc/sysconfig directory from RHELv8u4 with everything installed.

student@linux:~$ ls /etc/sysconfig/
apmd firstboot irda network saslauthd
apm-scripts grub irqbalance networking selinux
authconfig hidd keyboard ntpd spamassassin
autofs httpd kudzu openib.conf squid
bluetooth hwconf lm_sensors pand syslog

62

9.6. data directories

clock i18n mouse pcmcia sys-config-sec
console init mouse.B pgsql sys-config-users
crond installinfo named prelink sys-logviewer
desktop ipmi netdump rawdevices tux
diskdump iptables netdump_id_dsa rhn vncservers
dund iptables-cfg netdump_id_dsa.p samba xinetd
student@linux:~$

The file /etc/sysconfig/firstboot tells the Red Hat Setup Agent not to run at boot time.
If you want to run the Red Hat Setup Agent at the next reboot, then simply remove this file,
and run chkconfig ^-level 5 firstboot on. The RedHat Setup Agent allows you to install
the latest updates, create a user account, join the Red Hat Network and more. It will then
create the /etc/sysconfig/firstboot file again.

student@linux:~$ cat /etc/sysconfig/firstboot
RUN_FIRSTBOOT=NO

The /etc/sysconfig/harddisks file contains some parameters to tune the hard disks. The
file explains itself.

You can see hardware detected by kudzu in /etc/sysconfig/hwconf. Kudzu is software
from Red Hat for automatic discovery and configuration of hardware.

The keyboard type and keymap table are set in the /etc/sysconfig/keyboardfile. Formore
console keyboard information, check themanual pages of keymaps(5), dumpkeys(1), load-
keys(1) and the directory /lib/kbd/keymaps/.

root@linux:/etc/sysconfig# cat keyboard
KEYBOARDTYPE="pc"
KEYTABLE="us"

We will discuss networking files in this directory in the networking chapter.

9.6. data directories

9.6.1. /home

Users can store personal or project data under /home. It is common (but not mandatory
by the fhs) practice to name the users home directory after the user name in the format
/home/$USERNAME. For example:

student@linux:~$ ls /home
geert annik sandra paul tom

Besides giving every user (or every project or group) a location to store personal files, the
home directory of a user also serves as a location to store the user profile. A typical Unix user
profile contains many hidden files (files whose file name starts with a dot). The hidden files
of the Unix user profiles contain settings specific for that user.

student@linux:~$ ls -d /home/paul/.*
/home/paul/. /home/paul/.bash_profile /home/paul/.ssh
/home/paul/^. /home/paul/.bashrc /home/paul/.viminfo
/home/paul/.bash_history /home/paul/.lesshst

63

9. the Linux file tree

9.6.2. /root

Onmany systems /root is the default location for personal data andprofile of the root user.
If it does not exist by default, then some administrators create it.

9.6.3. /srv

You may use /srv for data that is served by your system. The FHS allows locating cvs,
rsync, ftp and www data in this location. The FHS also approves administrative naming in
/srv, like /srv/project55/ftp and /srv/sales/www.

On Sun Solaris (or Oracle Solaris) /export is used for this purpose.

9.6.4. /media

The /media directory serves as a mount point for removable media devices such as CD-
ROM’s, digital cameras, and various usb-attached devices. Since /media is rather new in the
Unix world, you could very well encounter systems running without this directory. Solaris 9
does not have it, Solaris 10 does. Most Linux distributions today mount all removable media
in /media.

student@linux:~$ ls /media/
cdrom cdrom0 usbdisk

9.6.5. /mnt

The /mnt directory should be empty and should only be used for temporary mount points
(according to the FHS).

Unix and Linux administrators used to create many directories here, like /mnt/something/.
You likely will encounter many systems with more than one directory created and/or
mounted inside /mnt to be used for various local and remote filesystems.

9.6.6. /tmp

Applications and users should use /tmp to store temporary data when needed. Data stored
in /tmp may use either disk space or RAM. Both of which are managed by the operating
system. Never use /tmp to store data that is important or which you wish to archive.

9.7. in memory directories

9.7.1. /dev

Device files in /dev appear to be ordinary files, but are not actually located on the hard disk.
The /dev directory is populated with files as the kernel is recognising hardware.

64

9.7. in memory directories

9.7.1.1. common physical devices

Common hardware such as hard disk devices are represented by device files in /dev. Below
a screenshot of SATA device files on a laptop and then IDE attached drives on a desktop. (The
detailed meaning of these devices will be discussed later.)

#
SATA or SCSI or USB
#
student@linux:~$ ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 /dev/sdb /dev/sdb1 /dev/sdb2

#
IDE or ATAPI
#
student@linux:~$ ls /dev/hd*
/dev/hda /dev/hda1 /dev/hda2 /dev/hdb /dev/hdb1 /dev/hdb2 /dev/hdc

Besides representing physical hardware, some device files are special. These special devices
can be very useful.

9.7.1.2. /dev/tty and /dev/pts

For example, /dev/tty1 represents a terminal or console attached to the system. (Don’t
break your head on the exact terminology of ’terminal’ or ’console’, what we mean here is a
command line interface.) When typing commands in a terminal that is part of a graphical
interface like Gnome or KDE, then your terminal will be represented as /dev/pts/1 (1 can be
another number).

9.7.1.3. /dev/null

On Linux you will find other special devices such as /dev/null which can be considered a
black hole; it has unlimited storage, but nothing can be retrieved from it. Technically speak-
ing, anything written to /dev/null will be discarded. /dev/null can be useful to discard un-
wanted output from commands. /dev/null is not a good location to store your backups ;-).

9.7.2. /proc conversation with the kernel

/proc is another special directory, appearing tobeordinaryfiles, but not takingupdisk space.
It is actually a view of the kernel, or better, what the kernel manages, and is a means to
interact with it directly. /proc is a proc filesystem.

student@linux:~$ mount -t proc
none on /proc type proc (rw)

When listing the /proc directory you will see many numbers (on any Unix) and some inter-
esting files (on Linux)

65

9. the Linux file tree

mul@linux:~$ ls /proc
1 2339 4724 5418 6587 7201 cmdline mounts
10175 2523 4729 5421 6596 7204 cpuinfo mtrr
10211 2783 4741 5658 6599 7206 crypto net
10239 2975 4873 5661 6638 7214 devices pagetypeinfo
141 29775 4874 5665 6652 7216 diskstats partitions
15045 29792 4878 5927 6719 7218 dma sched_debug
1519 2997 4879 6 6736 7223 driver scsi
1548 3 4881 6032 6737 7224 execdomains self
1551 30228 4882 6033 6755 7227 fb slabinfo
1554 3069 5 6145 6762 7260 filesystems stat
1557 31422 5073 6298 6774 7267 fs swaps
1606 3149 5147 6414 6816 7275 ide sys
180 31507 5203 6418 6991 7282 interrupts sysrq-trigger
181 3189 5206 6419 6993 7298 iomem sysvipc
182 3193 5228 6420 6996 7319 ioports timer_list
18898 3246 5272 6421 7157 7330 irq timer_stats
19799 3248 5291 6422 7163 7345 kallsyms tty
19803 3253 5294 6423 7164 7513 kcore uptime
19804 3372 5356 6424 7171 7525 key-users version
1987 4 5370 6425 7175 7529 kmsg version_signature
1989 42 5379 6426 7188 9964 loadavg vmcore
2 45 5380 6430 7189 acpi locks vmnet
20845 4542 5412 6450 7191 asound meminfo vmstat
221 46 5414 6551 7192 buddyinfo misc zoneinfo
2338 4704 5416 6568 7199 bus modules

Let’s investigate the file properties inside /proc. Looking at the date and time will display
the current date and time showing the files are constantly updated (a view on the kernel).

student@linux:~$ date
Mon Jan 29 18:06:32 EST 2007
student@linux:~$ ls -al /proc/cpuinfo
-r--r--r-- 1 root root 0 Jan 29 18:06 /proc/cpuinfo
student@linux:~$
student@linux:~$ ^^.time passes^^.
student@linux:~$
student@linux:~$ date
Mon Jan 29 18:10:00 EST 2007
student@linux:~$ ls -al /proc/cpuinfo
-r--r--r-- 1 root root 0 Jan 29 18:10 /proc/cpuinfo

Most files in /proc are 0bytes, yet they contain data--sometimes a lot of data. You can see this
by executing cat on files like /proc/cpuinfo, which contains information about the CPU.

student@linux:~$ file /proc/cpuinfo
/proc/cpuinfo: empty
student@linux:~$ cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 15
model : 43
model name : AMD Athlon(tm) 64 X2 Dual Core Processor 4600+
stepping : 1
cpu MHz : 2398.628

66

9.7. in memory directories

cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge^^.
bogomips : 4803.54

Just for fun, here is /proc/cpuinfo on a Sun Sunblade 1000...

student@linux:~$ cat /proc/cpuinfo
cpu : TI UltraSparc III (Cheetah)
fpu : UltraSparc III integrated FPU
promlib : Version 3 Revision 2
prom : 4.2.2
type : sun4u
ncpus probed : 2
ncpus active : 2
Cpu0Bogo : 498.68
Cpu0ClkTck : 000000002cb41780
Cpu1Bogo : 498.68
Cpu1ClkTck : 000000002cb41780
MMU Type : Cheetah
State:
CPU0: online
CPU1: online

Most of the files in /proc are read only, some require root privileges, some files are writable,
and many files in /proc/sys are writable. Let’s discuss some of the files in /proc.

9.7.2.1. /proc/interrupts

On the x86 architecture, /proc/interrupts displays the interrupts.

student@linux:~$ cat /proc/interrupts
CPU0

0: 13876877 IO-APIC-edge timer
1: 15 IO-APIC-edge i8042
8: 1 IO-APIC-edge rtc
9: 0 IO-APIC-level acpi
12: 67 IO-APIC-edge i8042
14: 128 IO-APIC-edge ide0
15: 124320 IO-APIC-edge ide1

169: 111993 IO-APIC-level ioc0
177: 2428 IO-APIC-level eth0
NMI: 0
LOC: 13878037
ERR: 0
MIS: 0

67

9. the Linux file tree

On a machine with two CPU’s, the file looks like this.

student@linux:~$ cat /proc/interrupts
CPU0 CPU1

0: 860013 0 IO-APIC-edge timer
1: 4533 0 IO-APIC-edge i8042
7: 0 0 IO-APIC-edge parport0
8: 6588227 0 IO-APIC-edge rtc
10: 2314 0 IO-APIC-fasteoi acpi
12: 133 0 IO-APIC-edge i8042
14: 0 0 IO-APIC-edge libata
15: 72269 0 IO-APIC-edge libata
18: 1 0 IO-APIC-fasteoi yenta
19: 115036 0 IO-APIC-fasteoi eth0
20: 126871 0 IO-APIC-fasteoi libata, ohci1394
21: 30204 0 IO-APIC-fasteoi ehci_hcd:usb1, uhci_hcd:usb2
22: 1334 0 IO-APIC-fasteoi saa7133[0], saa7133[0]
24: 234739 0 IO-APIC-fasteoi nvidia

NMI: 72 42
LOC: 860000 859994
ERR: 0

9.7.2.2. /proc/kcore

The physical memory is represented in /proc/kcore. Do not try to cat this file, instead use a
debugger. The size of /proc/kcore is the same as your physical memory, plus four bytes.

student@linux:~$ ls -lh /proc/kcore
-r-------- 1 root root 2.0G 2007-01-30 08:57 /proc/kcore
student@linux:~$

9.7.3. /sys Linux 2.6 hot plugging

The /sysdirectorywas created for the Linux 2.6 kernel. Since 2.6, Linux uses sysfs to support
usb and IEEE 1394 (FireWire) hot plug devices. See the manual pages of udev(8) (the suc-
cessor of devfs) and hotplug(8) for more info (or visit http://linux-hotplug.sourceforge.net/
).

Basically the /sys directory contains kernel information about hardware.

9.8. /usr Unix System Resources

Although /usr is pronounced like user, remember that it stands for Unix System Resources.
The /usr hierarchy should contain shareable, read only data. Some people choose to
mount /usr as read only. This can be done from its own partition or from a read only NFS
share (NFS is discussed later).

68

9.8. /usr Unix System Resources

9.8.1. /usr/bin

The /usr/bin directory contains a lot of commands.

student@linux:~$ ls /usr/bin | wc -l
1395

(On Solaris the /bin directory is a symbolic link to /usr/bin.)

9.8.2. /usr/include

The /usr/include directory contains general use include files for C.

student@linux:~$ ls /usr/include/
aalib.h expat_config.h math.h search.h
af_vfs.h expat_external.h mcheck.h semaphore.h
aio.h expat.h memory.h setjmp.h
AL fcntl.h menu.h sgtty.h
aliases.h features.h mntent.h shadow.h
^^.

9.8.3. /usr/lib

The /usr/lib directory contains libraries that are not directly executed by users or scripts.

student@linux:~$ ls /usr/lib | head -7
4Suite
ao
apt
arj
aspell
avahi
bonobo

9.8.4. /usr/local

The /usr/local directory can be used by an administrator to install software locally.

student@linux:~$ ls /usr/local/
bin etc games include lib man sbin share src
student@linux:~$ du -sh /usr/local/
128K /usr/local/

69

9. the Linux file tree

9.8.5. /usr/share

The /usr/share directory contains architecture independent data. As you can see, this is a
fairly large directory.

student@linux:~$ ls /usr/share/ | wc -l
263
student@linux:~$ du -sh /usr/share/
1.3G /usr/share/

This directory typically contains /usr/share/man for manual pages.

student@linux:~$ ls /usr/share/man
cs fr hu it.UTF-8 man2 man6 pl.ISO8859-2 sv
de fr.ISO8859-1 id ja man3 man7 pl.UTF-8 tr
es fr.UTF-8 it ko man4 man8 pt_BR zh_CN
fi gl it.ISO8859-1 man1 man5 pl ru zh_TW

And it contains /usr/share/games for all static game data (so no high-scores or play logs).

student@linux:~$ ls /usr/share/games/
openttd wesnoth

9.8.6. /usr/src

The /usr/src directory is the recommended location for kernel source files.

student@linux:~$ ls -l /usr/src/
total 12
drwxr-xr-x 4 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-686
drwxr-xr-x 18 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-common
drwxr-xr-x 3 root root 4096 2009-10-28 16:01 linux-kbuild-2.6.26

9.9. /var variable data

Files that are unpredictable in size, such as log, cache and spool files, should be located in
/var.

9.9.1. /var/log

The /var/log directory serves as a central point to contain all log files.

[student@linux ~]$ ls /var/log
acpid cron.2 maillog.2 quagga secure.4
amanda cron.3 maillog.3 radius spooler
anaconda.log cron.4 maillog.4 rpmpkgs spooler.1
anaconda.syslog cups mailman rpmpkgs.1 spooler.2
anaconda.xlog dmesg messages rpmpkgs.2 spooler.3
audit exim messages.1 rpmpkgs.3 spooler.4
boot.log gdm messages.2 rpmpkgs.4 squid
boot.log.1 httpd messages.3 sa uucp
boot.log.2 iiim messages.4 samba vbox

70

9.9. /var variable data

boot.log.3 iptraf mysqld.log scrollkeeper.log vmware-tools-guestd
boot.log.4 lastlog news secure wtmp
canna mail pgsql secure.1 wtmp.1
cron maillog ppp secure.2 Xorg.0.log
cron.1 maillog.1 prelink.log secure.3 Xorg.0.log.old

9.9.2. /var/log/messages

A typical first file to check when troubleshooting on Red Hat (and derivatives) is the
/var/log/messages file. By default this file will contain information on what just happened
to the system. The file is called /var/log/syslog on Debian and Ubuntu.

[root@linux ~^# tail /var/log/messages
Jul 30 05:13:56 anacron: anacron startup succeeded
Jul 30 05:13:56 atd: atd startup succeeded
Jul 30 05:13:57 messagebus: messagebus startup succeeded
Jul 30 05:13:57 cups-config-daemon: cups-config-daemon startup succeeded
Jul 30 05:13:58 haldaemon: haldaemon startup succeeded
Jul 30 05:14:00 fstab-sync[3560]: removed all generated mount points
Jul 30 05:14:01 fstab-sync[3628]: added mount point /media/cdrom for^^.
Jul 30 05:14:01 fstab-sync[3646]: added mount point /media/floppy for^^.
Jul 30 05:16:46 sshd(pam_unix)[3662]: session opened for user paul by^^.
Jul 30 06:06:37 su(pam_unix)[3904]: session opened for user root by paul

9.9.3. /var/cache

The /var/cache directory can contain cache data for several applications.

student@linux:~$ ls /var/cache/
apt dictionaries-common gdm man software-center
binfmts flashplugin-installer hald pm-utils
cups fontconfig jockey pppconfig
debconf fonts ldconfig samba

9.9.4. /var/spool

The /var/spool directory typically contains spool directories for mail and cron, but also
serves as a parent directory for other spool files (for example print spool files).

9.9.5. /var/lib

The /var/lib directory contains application state information.

Red Hat Enterprise Linux for example keeps files pertaining to rpm in /var/lib/rpm/.

9.9.6. /var/...

/var also contains Process ID files in /var/run (soon to be replaced with /run) and tempo-
rary files that survive a reboot in /var/tmp and information about file locks in /var/lock.
There will be more examples of /var usage further in this book.

71

9. the Linux file tree

9.10. practice: file system tree

1. Does the file /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type of
these files ?

2. What is the size of the Linux kernel file(s) (vmlinu*) in /boot ?

3. Create a directory ~/test. Then issue the following commands:

cd ~/test

dd if=/dev/zero of=zeroes.txt count=1 bs=100

od zeroes.txt

ddwill copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/zero to
~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?

4. Now issue the following command:

dd if=/dev/random of=random.txt count=1 bs=100 ; od random.txt

ddwill copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/random
to ~/test/random.txt. Can you describe the functionality of /dev/random ?

5. Issue the following two commands, and look at the first character of each output line.

ls -l /dev/sd* /dev/hd*

ls -l /dev/tty* /dev/input/mou*

The first ls will show block(b) devices, the second ls shows character(c) devices. Can you tell
the difference between block and character devices ?

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the pur-
pose of these files ?

7. Are there any files in /etc/skel/ ? Check also for hidden files.

8. Display /proc/cpuinfo. On what architecture is your Linux running ?

9. Display /proc/interrupts. What is the size of this file ? Where is this file stored ?

10. Can you enter the /root directory ? Are there (hidden) files ?

11. Are ifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are these
binaries in /sbin and not in /bin ?

12. Is /var/log a file or a directory ? What about /var/spool ?

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-Alt-F1,
Ctrl-Alt-F2, ...) and issue the who am i in both. Then try to echo a word from one terminal to
the other.

14. Read the man page of random and explain the difference between /dev/random and
/dev/urandom.

72

9.11. solution: file system tree

9.11. solution: file system tree

1. Does the file /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type of
these files ?

ls /bin/cat ; file /bin/cat

ls /bin/dd ; file /bin/dd

ls /bin/echo ; file /bin/echo

2. What is the size of the Linux kernel file(s) (vmlinu*) in /boot ?

ls -lh /boot/vm*

3. Create a directory ~/test. Then issue the following commands:

cd ~/test

dd if=/dev/zero of=zeroes.txt count=1 bs=100

od zeroes.txt

ddwill copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/zero to
~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?
/dev/zero is a Linux special device. It can be considered a source of zeroes. You cannot send
something to /dev/zero, but you can read zeroes from it.

4. Now issue the following command:

dd if=/dev/random of=random.txt count=1 bs=100 ; od random.txt

ddwill copy one times (count=1) a block of size 100 bytes (bs=100) from the file /dev/random
to ~/test/random.txt. Can you describe the functionality of /dev/random ?
/dev/random acts as a random number generator on your Linux machine.

5. Issue the following two commands, and look at the first character of each output line.

ls -l /dev/sd* /dev/hd*

ls -l /dev/tty* /dev/input/mou*

The first ls will show block(b) devices, the second ls shows character(c) devices. Can you tell
the difference between block and character devices ?

Block devices are always written to (or read from) in blocks. For hard disks, blocks of 512
bytes are common. Character devices act as a stream of characters (or bytes). Mouse and
keyboard are typical character devices.

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the pur-
pose of these files ?

/etc/hosts/etc/hosts contains hostnames with their ip address

/etc/resolv.conf/etc/resolv.conf should contain the ip address of a DNS name server.

73

9. the Linux file tree

7. Are there any files in /etc/skel/ ? Check also for hidden files.

Issue "ls -al /etc/skel/". Yes, there should be hidden files there.

8. Display /proc/cpuinfo. On what architecture is your Linux running ?

The file should contain at least one line with Intel or other cpu.

9. Display /proc/interrupts. What is the size of this file ? Where is this file stored ?

The size is zero, yet the file contains data. It is not stored anywhere because /proc is a virtual
file system that allows you to talk with the kernel. (If you answered ”stored in RAM-memory,
that is also correct...).

10. Can you enter the /root directory ? Are there (hidden) files ?

Try "cd /root". The /root directory is not accessible for normal users on most modern Linux systems.

11. Are ifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are these
binaries in /sbin and not in /bin ?

Because those files are only meant for system administrators.

12. Is /var/log a file or a directory ? What about /var/spool ?

Both are directories.

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-Alt-F1,
Ctrl-Alt-F2, ...) and issue the who am i in both. Then try to echo a word from one terminal to
the other.

tty-terminal: echo Hello > /dev/tty1

pts-terminal: echo Hello > /dev/pts/1

14. Read the man page of random and explain the difference between /dev/random and
/dev/urandom.

man 4 random

74

Part VII.

directory contents

75

10. working with directories

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Thismodule is a brief overviewof themost commoncommands toworkwithdirectories: pwd,
cd, ls, mkdir and rmdir. These commands are available on any Linux (or Unix) system.

Thismodule also discusses absolute and relative paths and path completion in the bash
shell.

10.1. pwd

The you are here sign can be displayed with the pwd command (Print Working Directory).
Go ahead, try it: Open a command line interface (also called a terminal, console or xterm)
and type pwd. The tool displays your current directory.

student@linux:~$ pwd
/home/paul

10.2. cd

You can change your current directory with the cd command (Change Directory).

student@linux$ cd /etc
student@linux$ pwd
/etc
student@linux$ cd /bin
student@linux$ pwd
/bin
student@linux$ cd /home/paul/
student@linux$ pwd
/home/paul

10.2.1. cd ~

The cd is also a shortcut to get back into your homedirectory. Just typing cdwithout a target
directory, will put you in your home directory. Typing cd ~ has the same effect.

student@linux$ cd /etc
student@linux$ pwd
/etc
student@linux$ cd
student@linux$ pwd
/home/paul
student@linux$ cd ~
student@linux$ pwd
/home/paul

77

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

10. working with directories

10.2.2. cd ..

To go to the parent directory (the one just above your current directory in the directory
tree), type cd ^. .

student@linux$ pwd
/usr/share/games
student@linux$ cd ^.
student@linux$ pwd
/usr/share

To stay in the current directory, type cd . ;-)We will see useful use of the . character repre-
senting the current directory later.

10.2.3. cd -

Another useful shortcut with cd is to just type cd - to go to the previous directory.

student@linux$ pwd
/home/paul
student@linux$ cd /etc
student@linux$ pwd
/etc
student@linux$ cd -
/home/paul
student@linux$ cd -
/etc

10.3. absolute and relative paths

You should be aware of absolute and relative paths in the file tree. When you type a
path starting with a slash (/), then the root of the file tree is assumed. If you don’t start
your path with a slash, then the current directory is the assumed starting point.

The screenshot below first shows the current directory /home/paul. From within this direc-
tory, you have to type cd /home instead of cd home to go to the /home directory.

student@linux$ pwd
/home/paul
student@linux$ cd home
bash: cd: home: No such file or directory
student@linux$ cd /home
student@linux$ pwd
/home

When inside /home, you have to type cd paul instead of cd /paul to enter the subdirectory
paul of the current directory /home.

student@linux$ pwd
/home
student@linux$ cd /paul
bash: cd: /paul: No such file or directory
student@linux$ cd paul
student@linux$ pwd
/home/paul

78

10.4. path completion

In case your current directory is the root directory /, then both cd /home and cd home
will get you in the /home directory.

student@linux$ pwd
/
student@linux$ cd home
student@linux$ pwd
/home
student@linux$ cd /
student@linux$ cd /home
student@linux$ pwd
/home

This was the last screenshot with pwd statements. From now on, the current directory will
often be displayed in the prompt. Later in this book we will explain how the shell variable
$PS1 can be configured to show this.

10.4. path completion

The tab key can help you in typing a path without errors. Typing cd /et followed by the
tab key will expand the command line to cd /etc/. When typing cd /Et followed by the
tab key, nothing will happen because you typed the wrong path (upper case E).

You will need fewer key strokes when using the tab key, and you will be sure your typed
path is correct!

10.5. ls

You can list the contents of a directory with ls.

student@linux:~$ ls
allfiles.txt dmesg.txt services stuff summer.txt
student@linux:~$

10.5.1. ls -a

A frequently used option with ls is -a to show all files. Showing all files means including the
hidden files. When a file name on a Linux file system starts with a dot, it is considered a
hidden file and it doesn’t show up in regular file listings.

student@linux:~$ ls
allfiles.txt dmesg.txt services stuff summer.txt
student@linux:~$ ls -a
. allfiles.txt .bash_profile dmesg.txt .lesshst stuff
^. .bash_history .bashrc services .ssh summer.txt
student@linux:~$

79

10. working with directories

10.5.2. ls -l

Many times youwill be using options with ls to display the contents of the directory in differ-
ent formats or to display different parts of the directory. Typing just ls gives you a list of files
in the directory. Typing ls -l (that is a letter L, not the number 1) gives you a long listing.

student@linux:~$ ls -l
total 17296
-rw-r--r-- 1 paul paul 17584442 Sep 17 00:03 allfiles.txt
-rw-r--r-- 1 paul paul 96650 Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 19558 Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4096 Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul 0 Sep 17 00:04 summer.txt

10.5.3. ls -lh

Another frequently used ls option is -h. It shows the numbers (file sizes) in a more human
readable format. Also shown below is some variation in the way you can give the options to
ls. We will explain the details of the output later in this book.

Note that we use the letter L as an option in this screenshot, not the number 1.

student@linux:~$ ls -l -h
total 17M
-rw-r--r-- 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r-- 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul 0 Sep 17 00:04 summer.txt
student@linux:~$ ls -lh
total 17M
-rw-r--r-- 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r-- 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul 0 Sep 17 00:04 summer.txt
student@linux:~$ ls -hl
total 17M
-rw-r--r-- 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r-- 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul 0 Sep 17 00:04 summer.txt
student@linux:~$ ls -h -l
total 17M
-rw-r--r-- 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r-- 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul 0 Sep 17 00:04 summer.txt
student@linux:~$

80

10.6. mkdir

10.6. mkdir

Walking around the Unix file tree is fun, but it is evenmore fun to create your own directories
with mkdir. You have to give at least one parameter to mkdir, the name of the new directory
to be created. Think before you type a leading / .

student@linux:~$ mkdir mydir
student@linux:~$ cd mydir
student@linux:~/mydir$ ls -al
total 8
drwxr-xr-x 2 paul paul 4096 Sep 17 00:07 .
drwxr-xr-x 48 paul paul 4096 Sep 17 00:07 ^.
student@linux:~/mydir$ mkdir stuff
student@linux:~/mydir$ mkdir otherstuff
student@linux:~/mydir$ ls -l
total 8
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 otherstuff
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 stuff
student@linux:~/mydir$

10.6.1. mkdir -p

The following commandwill fail, because the parent directory of threedirsdeep does not
exist.

student@linux:~$ mkdir mydir2/mysubdir2/threedirsdeep
mkdir: cannot create directory ‘mydir2/mysubdir2/threedirsdeep’: No such fi\
le or directory

When given the option -p, then mkdirwill create parent directories as needed.

student@linux:~$ mkdir -p mydir2/mysubdir2/threedirsdeep
student@linux:~$ cd mydir2
student@linux:~/mydir2$ ls -l
total 4
drwxr-xr-x 3 paul paul 4096 Sep 17 00:11 mysubdir2
student@linux:~/mydir2$ cd mysubdir2
student@linux:~/mydir2/mysubdir2$ ls -l
total 4
drwxr-xr-x 2 paul paul 4096 Sep 17 00:11 threedirsdeep
student@linux:~/mydir2/mysubdir2$ cd threedirsdeep/
student@linux:~/mydir2/mysubdir2/threedirsdeep$ pwd
/home/paul/mydir2/mysubdir2/threedirsdeep

10.7. rmdir

When a directory is empty, you can use rmdir to remove the directory.

student@linux:~/mydir$ ls -l
total 8
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 otherstuff
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 stuff
student@linux:~/mydir$ rmdir otherstuff

81

10. working with directories

student@linux:~/mydir$ cd ^.
student@linux:~$ rmdir mydir
rmdir: failed to remove ‘mydir’: Directory not empty
student@linux:~$ rmdir mydir/stuff
student@linux:~$ rmdir mydir
student@linux:~$

10.7.1. rmdir -p

And similar to the mkdir -p option, you can also use rmdir to recursively remove directo-
ries.

student@linux:~$ mkdir -p test42/subdir
student@linux:~$ rmdir -p test42/subdir
student@linux:~$

10.8. practice: working with directories

1. Display your current directory.

2. Change to the /etc directory.

3. Now change to your home directory using only three key presses.

4. Change to the /boot/grub directory using only eleven key presses.

5. Go to the parent directory of the current directory.

6. Go to the root directory.

7. List the contents of the root directory.

8. List a long listing of the root directory.

9. Stay where you are, and list the contents of /etc.

10. Stay where you are, and list the contents of /bin and /sbin.

11. Stay where you are, and list the contents of ~.

12. List all the files (including hidden files) in your home directory.

13. List the files in /boot in a human readable format.

14. Create a directory testdir in your home directory.

15. Change to the /etc directory, stay here and create a directory newdir in your home direc-
tory.

16. Create in one command the directories ~/dir1/dir2/dir3 (dir3 is a subdirectory from dir2,
and dir2 is a subdirectory from dir1).

17. Remove the directory testdir.

18. If time permits (or if you are waiting for other students to finish this practice), use and
understand pushd and popd. Use the man page of bash to find information about these
commands.

82

10.9. solution: working with directories

10.9. solution: working with directories

1. Display your current directory.

pwd

2. Change to the /etc directory.

cd /etc

3. Now change to your home directory using only three key presses.

cd (and the enter key)

4. Change to the /boot/grub directory using only eleven key presses.

cd /boot/grub (use the tab key)

5. Go to the parent directory of the current directory.

cd ^. (with space between cd and ^.)

6. Go to the root directory.

cd /

7. List the contents of the root directory.

ls

8. List a long listing of the root directory.

ls -l

9. Stay where you are, and list the contents of /etc.

ls /etc

10. Stay where you are, and list the contents of /bin and /sbin.

ls /bin /sbin

11. Stay where you are, and list the contents of ~.

ls ~

12. List all the files (including hidden files) in your home directory.

ls -al ~

13. List the files in /boot in a human readable format.

83

10. working with directories

ls -lh /boot

14. Create a directory testdir in your home directory.

mkdir ~/testdir

15. Change to the /etc directory, stay here and create a directory newdir in your home direc-
tory.

cd /etc ; mkdir ~/newdir

16. Create in one command the directories ~/dir1/dir2/dir3 (dir3 is a subdirectory from dir2,
and dir2 is a subdirectory from dir1).

mkdir -p ~/dir1/dir2/dir3

17. Remove the directory testdir.

rmdir testdir

18. If time permits (or if you are waiting for other students to finish this practice), use and
understand pushd and popd. Use the man page of bash to find information about these
commands.

man bash # opens the manual
/pushd # searches for pushd
n # next (do this two/three times)

The Bash shell has two built-in commands called pushd and popd. Both commands work
with a common stack of previous directories. Pushd adds a directory to the stack and
changes to a new current directory, popd removes a directory from the stack and sets the
current directory.

student@linux:/etc$ cd /bin
student@linux:/bin$ pushd /lib
/lib /bin
student@linux:/lib$ pushd /proc
/proc /lib /bin
student@linux:/proc$ popd
/lib /bin
student@linux:/lib$ popd
/bin

84

Part VIII.

globbing

85

11. file globbing

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Typing man 7 glob (on Debian) will tell you that long ago there was a program called
/etc/glob that would expand wildcard patterns.

Today the shell is responsible for file globbing (or dynamic filename generation). This
chapter will explain file globbing.

11.1. * asterisk

The asterisk * is interpreted by the shell as a sign to generate filenames, matching the aster-
isk to any combination of characters (even none). When no path is given, the shell will use
filenames in the current directory. See theman page of glob(7) for more information. (This
is part of LPI topic 1.103.3.)

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls File*
File4 File55 FileA Fileab FileAB
[student@linux gen]$ ls file*
file1 file2 file3 fileab fileabc
[student@linux gen]$ ls *ile55
File55
[student@linux gen]$ ls F*ile55
File55
[student@linux gen]$ ls F*55
File55
[student@linux gen]$

11.2. ? question mark

Similar to the asterisk, the question mark ? is interpreted by the shell as a sign to generate
filenames, matching the question mark with exactly one character.

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls File?
File4 FileA
[student@linux gen]$ ls Fil?4
File4
[student@linux gen]$ ls Fil^?
File4 FileA
[student@linux gen]$ ls File^?
File55 Fileab FileAB
[student@linux gen]$

87

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

11. file globbing

11.3. [] square brackets

The square bracket [is interpreted by the shell as a sign to generate filenames, matching
any of the characters between [and the first subsequent]. The order in this list between
the brackets is not important. Each pair of brackets is replaced by exactly one character.

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls File[5A]
FileA
[student@linux gen]$ ls File[A5]
FileA
[student@linux gen]$ ls File[A5][5b]
File55
[student@linux gen]$ ls File[a5][5b]
File55 Fileab
[student@linux gen]$ ls File[a5][5b][abcdefghijklm]
ls: File[a5][5b][abcdefghijklm]: No such file or directory
[student@linux gen]$ ls file[a5][5b][abcdefghijklm]
fileabc
[student@linux gen]$

You can also exclude characters from a list between square brackets with the exclamation
mark !. And you are allowed to make combinations of these wild cards.

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls file[a5][!Z]
fileab
[student@linux gen]$ ls file[!5]*
file1 file2 file3 fileab fileabc
[student@linux gen]$ ls file[!5]?
fileab
[student@linux gen]$

11.4. a-z and 0-9 ranges

The bash shell will also understand ranges of characters between brackets.

[student@linux gen]$ ls
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[student@linux gen]$ ls file[a-z]*
fileab fileab2 fileabc
[student@linux gen]$ ls file[0-9]
file1 file2 file3
[student@linux gen]$ ls file[a-z][a-z][0-9]*
fileab2
[student@linux gen]$

88

11.5. $LANG and square brackets

11.5. $LANG and square brackets

But, don’t forget the influence of the LANG variable. Some languages include lower case
letters in an upper case range (and vice versa).

student@linux:~/test$ ls [A-Z]ile?
file1 file2 file3 File4
student@linux:~/test$ ls [a-z]ile?
file1 file2 file3 File4
student@linux:~/test$ echo $LANG
en_US.UTF-8
student@linux:~/test$ LANG=C
student@linux:~/test$ echo $LANG
C
student@linux:~/test$ ls [a-z]ile?
file1 file2 file3
student@linux:~/test$ ls [A-Z]ile?
File4
student@linux:~/test$

If $LC_ALL is set, then this will also need to be reset to prevent file globbing.

11.6. preventing file globbing

The screenshot below should be no surprise. The echo * will echo a * when in an empty
directory. And it will echo the names of all files when the directory is not empty.

student@linux:~$ mkdir test42
student@linux:~$ cd test42
student@linux:~/test42$ echo *
*
student@linux:~/test42$ touch file42 file33
student@linux:~/test42$ echo *
file33 file42

Globbing can be prevented using quotes or by escaping the special characters, as shown in
this screenshot.

student@linux:~/test42$ echo *
file33 file42
student@linux:~/test42$ echo *
*
student@linux:~/test42$ echo '*'
*
student@linux:~/test42$ echo "*"
*

11.7. practice: shell globbing

1. Create a test directory and enter it.

2. Create the following files :

89

11. file globbing

file1
file10
file11
file2
File2
File3
file33
fileAB
filea
fileA
fileAAA
file(
file 2

(the last one has 6 characters including a space)

3. List (with ls) all files starting with file

4. List (with ls) all files starting with File

5. List (with ls) all files starting with file and ending in a number.

6. List (with ls) all files starting with file and ending with a letter

7. List (with ls) all files starting with File and having a digit as fifth character.

8. List (with ls) all files starting with File and having a digit as fifth character and nothing
else.

9. List (with ls) all files starting with a letter and ending in a number.

10. List (with ls) all files that have exactly five characters.

11. List (with ls) all files that start with f or F and end with 3 or A.

12. List (with ls) all files that start with f have i or R as second character and end in a number.

13. List all files that do not start with the letter F.

14. Copy the value of $LANG to $MyLANG.

15. Show the influence of $LANG in listing A-Z or a-z ranges.

16. You receive information that one of your servers was cracked, the cracker probably re-
placed the ls command. You know that the echo command is safe to use. Can echo replace
ls ? How can you list the files in the current directory with echo ?

17. Is there another command besides cd to change directories ?

11.8. solution: shell globbing

1. Create a test directory and enter it.

mkdir testdir; cd testdir

2. Create the following files :

90

11.8. solution: shell globbing

file1
file10
file11
file2
File2
File3
file33
fileAB
filea
fileA
fileAAA
file(
file 2

(the last one has 6 characters including a space)

touch file1 file10 file11 file2 File2 File3
touch file33 fileAB filea fileA fileAAA
touch "file("
touch "file 2"

3. List (with ls) all files starting with file

ls file*

4. List (with ls) all files starting with File

ls File*

5. List (with ls) all files starting with file and ending in a number.

ls file*[0-9]

6. List (with ls) all files starting with file and ending with a letter

ls file*[a-z]

7. List (with ls) all files starting with File and having a digit as fifth character.

ls File[0-9]*

8. List (with ls) all files starting with File and having a digit as fifth character and nothing
else.

ls File[0-9]

9. List (with ls) all files starting with a letter and ending in a number.

ls [a-z]*[0-9]

10. List (with ls) all files that have exactly five characters.

ls ?????

91

11. file globbing

11. List (with ls) all files that start with f or F and end with 3 or A.

ls [fF]*[3A]

12. List (with ls) all files that start with f have i or R as second character and end in a number.

ls f[iR]*[0-9]

13. List all files that do not start with the letter F.

ls [!F]*

14. Copy the value of $LANG to $MyLANG.

MyLANG=$LANG

15. Show the influence of $LANG in listing A-Z or a-z ranges.

see example in book

16. You receive information that one of your servers was cracked, the cracker probably re-
placed the ls command. You know that the echo command is safe to use. Can echo replace
ls ? How can you list the files in the current directory with echo ?

echo *

17. Is there another command besides cd to change directories ?

pushd popd

92

Part IX.

file and directory management

93

12. working with files

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

In this chapter we learn how to recognise, create, remove, copy and move files using com-
mands like file, touch, rm, cp, mv and rename.

12.1. all files are case sensitive

Files on Linux (or any Unix) are case sensitive. This means that FILE1 is different from
file1, and/etc/hosts is different from/etc/Hosts (the latter onedoesnot exist on a typical
Linux computer).

This screenshot shows the difference between two files, one with upper case W, the other
with lower case w.

student@linux:~/Linux$ ls
winter.txt Winter.txt
student@linux:~/Linux$ cat winter.txt
It is cold.
student@linux:~/Linux$ cat Winter.txt
It is very cold!

12.2. everything is a file

A directory is a special kind of file, but it is still a (case sensitive!) file. Each terminal
window (for example /dev/pts/4), any hard disk or partition (for example /dev/sdb1) and
any process are all represented somewhere in the file system as a file. It will become
clear throughout this course that everything on Linux is a file.

12.3. file

The file utility determines the file type. Linux does not use extensions to determine the
file type. The command line does not care whether a file ends in .txt or .pdf. As a system
administrator, you should use the file command to determine the file type. Here are some
examples on a typical Linux system.

student@linux:~$ file pic33.png
pic33.png: PNG image data, 3840 x 1200, 8-bit/color RGBA, non-interlaced
student@linux:~$ file /etc/passwd
/etc/passwd: ASCII text
student@linux:~$ file HelloWorld.c
HelloWorld.c: ASCII C program text

95

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

12. working with files

The file command uses amagic file that contains patterns to recognise file types. Themagic
file is located in /usr/share/file/magic. Type man 5 magic for more information.

It is interesting to point out file -s for special files like those in /dev and /proc.

root@linux~# file /dev/sda
/dev/sda: block special
root@linux~# file -s /dev/sda
/dev/sda: x86 boot sector; partition 1: ID=0x83, active, starthead^^.
root@linux~# file /proc/cpuinfo
/proc/cpuinfo: empty
root@linux~# file -s /proc/cpuinfo
/proc/cpuinfo: ASCII C^+ program text

12.4. touch

12.4.1. create an empty file

One easyway to create an empty file is with touch. (Wewill seemany otherways for creating
files later in this book.)

This screenshot starts with an empty directory, creates two files with touch and the lists
those files.

student@linux:~$ ls -l
total 0
student@linux:~$ touch file42
student@linux:~$ touch file33
student@linux:~$ ls -l
total 0
-rw-r--r-- 1 paul paul 0 Oct 15 08:57 file33
-rw-r--r-- 1 paul paul 0 Oct 15 08:56 file42
student@linux:~$

12.4.2. touch -t

The touch command can set somepropertieswhile creating empty files. Can youdetermine
what is set by looking at the next screenshot? If not, check the manual for touch.

student@linux:~$ touch -t 200505050000 SinkoDeMayo
student@linux:~$ touch -t 130207111630 BigBattle.txt
student@linux:~$ ls -l
total 0
-rw-r--r-- 1 paul paul 0 Jul 11 1302 BigBattle.txt
-rw-r--r-- 1 paul paul 0 Oct 15 08:57 file33
-rw-r--r-- 1 paul paul 0 Oct 15 08:56 file42
-rw-r--r-- 1 paul paul 0 May 5 2005 SinkoDeMayo
student@linux:~$

96

12.5. rm

12.5. rm

12.5.1. remove forever

When you no longer need a file, use rm to remove it. Unlike some graphical user interfaces,
the command line in general does not have a waste bin or trash can to recover files. When
you use rm to remove a file, the file is gone. Therefore, be careful when removing files!

student@linux:~$ ls
BigBattle.txt file33 file42 SinkoDeMayo
student@linux:~$ rm BigBattle.txt
student@linux:~$ ls
file33 file42 SinkoDeMayo
student@linux:~$

12.5.2. rm -i

To prevent yourself from accidentally removing a file, you can type rm -i.

student@linux:~$ ls
file33 file42 SinkoDeMayo
student@linux:~$ rm -i file33
rm: remove regular empty file `file33'? yes
student@linux:~$ rm -i SinkoDeMayo
rm: remove regular empty file `SinkoDeMayo'? n
student@linux:~$ ls
file42 SinkoDeMayo
student@linux:~$

12.5.3. rm -rf

By default, rm -rwill not remove non-empty directories. However rm accepts several options
that will allow you to remove any directory. The rm -rf statement is famous because it will
erase anything (providing that you have the permissions to do so). When you are logged on
as root, be very careful with rm -rf (the fmeans force and the rmeans recursive) since
being root implies that permissions don’t apply to you. You can literally erase your entire file
system by accident.

student@linux:~$ mkdir test
student@linux:~$ rm test
rm: cannot remove `test': Is a directory
student@linux:~$ rm -rf test
student@linux:~$ ls test
ls: cannot access test: No such file or directory
student@linux:~$

12.6. cp

12.6.1. copy one file

To copy a file, use cpwith a source and a target argument.

97

12. working with files

student@linux:~$ ls
file42 SinkoDeMayo
student@linux:~$ cp file42 file42.copy
student@linux:~$ ls
file42 file42.copy SinkoDeMayo

12.6.2. copy to another directory

If the target is a directory, then the source files are copied to that target directory.

student@linux:~$ mkdir dir42
student@linux:~$ cp SinkoDeMayo dir42
student@linux:~$ ls dir42/
SinkoDeMayo

12.6.3. cp -r

To copy complete directories, use cp -r (the -r option forces recursive copying of all files
in all subdirectories).

student@linux:~$ ls
dir42 file42 file42.copy SinkoDeMayo
student@linux:~$ cp -r dir42/ dir33
student@linux:~$ ls
dir33 dir42 file42 file42.copy SinkoDeMayo
student@linux:~$ ls dir33/
SinkoDeMayo

12.6.4. copy multiple files to directory

You can also use cp to copy multiple files into a directory. In this case, the last argument
(a.k.a. the target) must be a directory.

student@linux:~$ cp file42 file42.copy SinkoDeMayo dir42/
student@linux:~$ ls dir42/
file42 file42.copy SinkoDeMayo

12.6.5. cp -i

To prevent cp from overwriting existing files, use the -i (for interactive) option.

student@linux:~$ cp SinkoDeMayo file42
student@linux:~$ cp SinkoDeMayo file42
student@linux:~$ cp -i SinkoDeMayo file42
cp: overwrite `file42'? n
student@linux:~$

98

12.7. mv

12.7. mv

12.7.1. rename files with mv

Use mv to rename a file or to move the file to another directory.

student@linux:~$ ls
dir33 dir42 file42 file42.copy SinkoDeMayo
student@linux:~$ mv file42 file33
student@linux:~$ ls
dir33 dir42 file33 file42.copy SinkoDeMayo
student@linux:~$

When you need to rename only one file then mv is the preferred command to use.

12.7.2. rename directories with mv

The same mv command can be used to rename directories.

student@linux:~$ ls -l
total 8
drwxr-xr-x 2 paul paul 4096 Oct 15 09:36 dir33
drwxr-xr-x 2 paul paul 4096 Oct 15 09:36 dir42
-rw-r--r-- 1 paul paul 0 Oct 15 09:38 file33
-rw-r--r-- 1 paul paul 0 Oct 15 09:16 file42.copy
-rw-r--r-- 1 paul paul 0 May 5 2005 SinkoDeMayo
student@linux:~$ mv dir33 backup
student@linux:~$ ls -l
total 8
drwxr-xr-x 2 paul paul 4096 Oct 15 09:36 backup
drwxr-xr-x 2 paul paul 4096 Oct 15 09:36 dir42
-rw-r--r-- 1 paul paul 0 Oct 15 09:38 file33
-rw-r--r-- 1 paul paul 0 Oct 15 09:16 file42.copy
-rw-r--r-- 1 paul paul 0 May 5 2005 SinkoDeMayo
student@linux:~$

12.7.3. mv -i

The mv also has a -i switch similar to cp and rm.

this screenshot shows that mv -iwill ask permission to overwrite an existing file.

student@linux:~$ mv -i file33 SinkoDeMayo
mv: overwrite `SinkoDeMayo'? no
student@linux:~$

99

12. working with files

12.8. rename

12.8.1. about rename

The rename command is one of the rare occasions where the Linux Fundamentals book has
to make a distinction between Linux distributions. Almost every command in the Funda-
mentals part of this book works on almost every Linux computer. But rename is different.
Try to use mvwhenever you need to rename only a couple of files.

12.8.2. rename on Debian/Ubuntu

The rename command on Debian uses regular expressions (regular expression or shor regex
are explained in a later chapter) to renamemany files at once.

Below a rename example that switches all occurrences of txt to png for all file names ending
in .txt.

student@linux:~/test42$ ls
abc.txt file33.txt file42.txt
student@linux:~/test42$ rename 's/\.txt/\.png/' *.txt
student@linux:~/test42$ ls
abc.png file33.png file42.png

This second example switches all (first) occurrences of file into document for all file names
ending in .png.

student@linux:~/test42$ ls
abc.png file33.png file42.png
student@linux:~/test42$ rename 's/file/document/' *.png
student@linux:~/test42$ ls
abc.png document33.png document42.png
student@linux:~/test42$

12.8.3. rename on CentOS/RHEL/Fedora

On Red Hat Enterprise Linux, the syntax of rename is a bit different. The first example below
renames all *.conf files replacing any occurrence of .conf with .backup.

[student@linux ~]$ touch one.conf two.conf three.conf
[student@linux ~]$ rename .conf .backup *.conf
[student@linux ~]$ ls
one.backup three.backup two.backup
[student@linux ~]$

The second example renames all (*) files replacing one with ONE.

[student@linux ~]$ ls
one.backup three.backup two.backup
[student@linux ~]$ rename one ONE *
[student@linux ~]$ ls
ONE.backup three.backup two.backup
[student@linux ~]$

100

12.9. practice: working with files

12.9. practice: working with files

1. List the files in the /bin directory

2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.

3a. Download wolf.jpg and LinuxFun.pdf from http://linux-training.be (wget http://linux-
training.be/files/studentfiles/wolf.jpgandwgethttp://linux-training.be/files/books/LinuxFun.pdf)

wget http:^/linux-training.be/files/studentfiles/wolf.jpg
wget http:^/linux-training.be/files/studentfiles/wolf.png
wget http:^/linux-training.be/files/books/LinuxFun.pdf

3b. Display the type of file of wolf.jpg and LinuxFun.pdf

3c. Rename wolf.jpg to wolf.pdf (use mv).

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

4. Create a directory ~/touched and enter it.

5. Create the files today.txt and yesterday.txt in touched.

6. Change the date on yesterday.txt to match yesterday’s date.

7. Copy yesterday.txt to copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

9. Create a directory called ~/testbackup and copy all files from ~/touched into it.

10. Use one command to remove the directory ~/testbackup and all files into it.

11. Create a directory ~/etcbackup and copy all *.conf files from /etc into it. Did you include all
subdirectories of /etc ?

12. Use rename to rename all *.conf files to *.backup . (if you have more than one distro
available, try it on all!)

12.10. solution: working with files

1. List the files in the /bin directory

ls /bin

2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.

file /bin/cat /etc/passwd /usr/bin/passwd

3a. Download wolf.jpg and LinuxFun.pdf from http://linux-training.be (wget http://linux-
training.be/files/studentfiles/wolf.jpgandwgethttp://linux-training.be/files/books/LinuxFun.pdf)

wget http:^/linux-training.be/files/studentfiles/wolf.jpg
wget http:^/linux-training.be/files/studentfiles/wolf.png
wget http:^/linux-training.be/files/books/LinuxFun.pdf

3b. Display the type of file of wolf.jpg and LinuxFun.pdf

file wolf.jpg LinuxFun.pdf

101

12. working with files

3c. Rename wolf.jpg to wolf.pdf (use mv).

mv wolf.jpg wolf.pdf

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

file wolf.pdf LinuxFun.pdf

4. Create a directory ~/touched and enter it.

mkdir ~/touched ; cd ~/touched

5. Create the files today.txt and yesterday.txt in touched.

touch today.txt yesterday.txt

6. Change the date on yesterday.txt to match yesterday’s date.

touch -t 200810251405 yesterday.txt (substitute 20081025 with yesterday)

7. Copy yesterday.txt to copy.yesterday.txt

cp yesterday.txt copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

mv copy.yesterday.txt kim

9. Create a directory called ~/testbackup and copy all files from ~/touched into it.

mkdir ~/testbackup ; cp -r ~/touched ~/testbackup/

10. Use one command to remove the directory ~/testbackup and all files into it.

rm -rf ~/testbackup

11. Create a directory ~/etcbackup and copy all *.conf files from /etc into it. Did you include all
subdirectories of /etc ?

cp -r /etc^*.conf ~/etcbackup

Only *.conf files that are directly in /etc/ are copied.

12. Use rename to rename all *.conf files to *.backup . (if you have more than one distro
available, try it on all!)

On RHEL: touch 1.conf 2.conf ; rename conf backup *.conf

On Debian: touch 1.conf 2.conf ; rename 's/conf/backup/' *.conf

102

13. basic Unix tools

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This chapter introduces commands to find or locate files and to compress files, together
with other common tools that were not discussed before. While the tools discussed here are
technically not considered filters, they can be used in pipes.

13.1. find

The find command can be very useful at the start of a pipe to search for files. Here are some
examples. You might want to add 2>/dev/null to the command lines to avoid cluttering
your screen with error messages.

Find all files in /etc and put the list in etcfiles.txt

find /etc > etcfiles.txt

Find all files of the entire system and put the list in allfiles.txt

find / > allfiles.txt

Find files that end in .conf in the current directory (and all subdirs).

find . -name "*.conf"

Find files of type file (not directory, pipe or etc.) that end in .conf.

find . -type f -name "*.conf"

Find files of type directory that end in .bak .

find /data -type d -name "*.bak"

Find files that are newer than file42.txt

find . -newer file42.txt

Find can also execute another command on every file found. This example will look for *.odf
files and copy them to /backup/.

find /data -name "*.odf" -exec cp {} /backup/ \;

Find can also execute, after your confirmation, another command on every file found. This
example will remove *.odf files if you approve of it for every file found.

find /data -name "*.odf" -ok rm {} \;

103

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

13. basic Unix tools

13.2. locate

The locate tool is very different from find in that it uses an index to locate files. This is a lot
faster than traversing all the directories, but it also means that it is always outdated. If the
index does not exist yet, then you have to create it (as root on Red Hat Enterprise Linux) with
the updatedb command.

[student@linux ~]$ locate Samba
warning: locate: could not open database: /var/lib/slocate/slocate.db:^^.
warning: You need to run the 'updatedb' command (as root) to create th^^.
Please have a look at /etc/updatedb.conf to enable the daily cron job.
[student@linux ~]$ updatedb
fatal error: updatedb: You are not authorized to create a default sloc^^.
[student@linux ~]$ su -
Password:
[root@linux ~^# updatedb
[root@linux ~^#

Most Linux distributions will schedule the updatedb to run once every day.

13.3. date

The date command can display the date, time, time zone and more.

student@linux ~$ date
Sat Apr 17 12:44:30 CEST 2010

A date string can be customised to display the format of your choice. Check the man page
for more options.

student@linux ~$ date +'%A %d-%m-%Y'
Saturday 17-04-2010

Time on any Unix is calculated in number of seconds since 1969 (the first second being the
first second of the first of January 1970). Use date +%s to display Unix time in seconds.

student@linux ~$ date +%s
1271501080

When will this seconds counter reach two thousand million ?

student@linux ~$ date -d '1970-01-01 + 2000000000 seconds'
Wed May 18 04:33:20 CEST 2033

104

13.4. cal

13.4. cal

The cal command displays the current month, with the current day highlighted.

student@linux ~$ cal
April 2010

Su Mo Tu We Th Fr Sa
1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

You can select any month in the past or the future.

student@linux ~$ cal 2 1970
February 1970

Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28

13.5. sleep

The sleep command is sometimes used in scripts towait a number of seconds. This example
shows a five second sleep.

student@linux ~$ sleep 5
student@linux ~$

13.6. time

The time command can display how long it takes to execute a command. The date com-
mand takes only a little time.

student@linux ~$ time date
Sat Apr 17 13:08:27 CEST 2010

real 0m0.014s
user 0m0.008s
sys 0m0.006s

The sleep 5 command takes five real seconds to execute, but consumes little cpu time.

student@linux ~$ time sleep 5

real 0m5.018s
user 0m0.005s
sys 0m0.011s

This bzip2 command compresses a file and uses a lot of cpu time.

105

13. basic Unix tools

student@linux ~$ time bzip2 text.txt

real 0m2.368s
user 0m0.847s
sys 0m0.539s

13.7. gzip - gunzip

Users never have enough disk space, so compression comes in handy. The gzip command
can make files take up less space.

student@linux ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt
student@linux ~$ gzip text.txt
student@linux ~$ ls -lh text.txt.gz
-rw-rw-r-- 1 paul paul 760K Apr 17 13:11 text.txt.gz

You can get the original back with gunzip.

student@linux ~$ gunzip text.txt.gz
student@linux ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt

13.8. zcat - zmore

Text files that are compressed with gzip can be viewed with zcat and zmore.

student@linux ~$ head -4 text.txt
/
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh
student@linux ~$ gzip text.txt
student@linux ~$ zcat text.txt.gz | head -4
/
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh

13.9. bzip2 - bunzip2

Files can also be compressed with bzip2which takes a little more time than gzip, but com-
presses better.

student@linux ~$ bzip2 text.txt
student@linux ~$ ls -lh text.txt.bz2
-rw-rw-r-- 1 paul paul 569K Apr 17 13:11 text.txt.bz2

Files can be uncompressed again with bunzip2.

student@linux ~$ bunzip2 text.txt.bz2
student@linux ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt

106

13.10. bzcat - bzmore

13.10. bzcat - bzmore

And in the same way bzcat and bzmore can display files compressed with bzip2.

student@linux ~$ bzip2 text.txt
student@linux ~$ bzcat text.txt.bz2 | head -4
/
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh

13.11. practice: basic Unix tools

1. Explain the difference between these two commands. This question is very important. If
you don’t know the answer, then look back at the shell chapter.

find /data -name "*.txt"

find /data -name *.txt

2. Explain the difference between these two statements. Will they both work when there
are 200 .odf files in /data ? How about when there are 2 million .odf files ?

find /data -name "*.odf" > data_odf.txt

find /data^*.odf > data_odf.txt

3. Write a find command that finds all files created after January 30th 2010.

4. Write a find command that finds all *.odf files created in September 2009.

5. Count the number of *.conf files in /etc and all its subdirs.

6. Here are two commands that do the same thing: copy *.odf files to /backup/ . What would
be a reason to replace the first command with the second ? Again, this is an important
question.

cp -r /data^*.odf /backup/

find /data -name "*.odf" -exec cp {} /backup/ \;

7. Create a file called loctest.txt. Can you find this file with locate ? Why not ? How do
you make locate find this file ?

8. Use find and -exec to rename all .htm files to .html.

9. Issue the date command. Now display the date in YYYY/MM/DD format.

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything special ?

107

13. basic Unix tools

13.12. solution: basic Unix tools

1. Explain the difference between these two commands. This question is very important. If
you don’t know the answer, then look back at the shell chapter.

find /data -name "*.txt"

find /data -name *.txt

When *.txt is quoted then the shell will not touch it. The find tool will look in the /data for
all files ending in .txt.

When *.txt is not quoted then the shell might expand this (when one or more files that
ends in .txt exist in the current directory). The find might show a different result, or can
result in a syntax error.

2. Explain the difference between these two statements. Will they both work when there
are 200 .odf files in /data ? How about when there are 2 million .odf files ?

find /data -name "*.odf" > data_odf.txt

find /data^*.odf > data_odf.txt

The first find will output all .odf filenames in /data and all subdirectories. The shell will
redirect this to a file.

The second find will output all files named .odf in /data and will also output all files that
exist in directories named *.odf (in /data).

With twomillion files the command line would be expanded beyond themaximum that the
shell can accept. The last part of the command line would be lost.

3. Write a find command that finds all files created after January 30th 2010.

touch -t 201001302359 marker_date
find . -type f -newer marker_date

There is another solution :
find . -type f -newerat "20100130 23:59:59"

4. Write a find command that finds all *.odf files created in September 2009.

touch -t 200908312359 marker_start
touch -t 200910010000 marker_end
find . -type f -name "*.odf" -newer marker_start ! -newer marker_end

The exclamation mark ! -newer can be read as not newer.

5. Count the number of *.conf files in /etc and all its subdirs.

find /etc -type f -name '*.conf' | wc -l

6. Here are two commands that do the same thing: copy *.odf files to /backup/ . What would
be a reason to replace the first command with the second ? Again, this is an important
question.

108

13.12. solution: basic Unix tools

cp -r /data^*.odf /backup/

find /data -name "*.odf" -exec cp {} /backup/ \;

The first might fail when there are too many files to fit on one command line.

7. Create a file called loctest.txt. Can you find this file with locate ? Why not ? How do
you make locate find this file ?

You cannot locate this with locate because it is not yet in the index.

updatedb

8. Use find and -exec to rename all .htm files to .html.

student@linux ~$ find . -name '*.htm'
./one.htm
./two.htm
student@linux ~$ find . -name '*.htm' -exec mv {} {}l \;
student@linux ~$ find . -name '*.htm*'
./one.html
./two.html

9. Issue the date command. Now display the date in YYYY/MM/DD format.

date +%Y/%m/%d

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything special ?

cal 1582

Thecalendars aredifferentdependingon thecountry. Checkhttp://linux-training.be/files/studentfiles/dates.txt

109

Part X.

links

111

14. file links

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

An average computer using Linux has a file system with many hard links and symbolic
links.

To understand links in a file system, you first have to understand what an inode is.

14.1. inodes

14.1.1. inode contents

An inode is a data structure that containsmetadata about a file. When the file system stores
a new file on the hard disk, it stores not only the contents (data) of the file, but also extra
properties like the name of the file, the creation date, its permissions, the owner of the file,
and more. All this information (except the name of the file and the contents of the file) is
stored in the inode of the file.

The ls -l command will display some of the inode contents, as seen in this screenshot.

root@linux ~# ls -ld /home/project42/
drwxr-xr-x 4 root pro42 4.0K Mar 27 14:29 /home/project42/

14.1.2. inode table

The inode table contains all of the inodes and is created when you create the file system
(with mkfs). You can use the df -i command to see howmany inodes are used and free on
mounted file systems.

root@linux ~# df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/mapper/VolGroup00-LogVol00

4947968 115326 4832642 3% /
/dev/hda1 26104 45 26059 1% /boot
tmpfs 64417 1 64416 1% /dev/shm
/dev/sda1 262144 2207 259937 1% /home/project42
/dev/sdb1 74400 5519 68881 8% /home/project33
/dev/sdb5 0 0 0 - /home/sales
/dev/sdb6 100744 11 100733 1% /home/research

In the df -i screenshot above you can see the inode usage for several mounted file sys-
tems. You don’t see numbers for /dev/sdb5 because it is a fat file system.

113

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

14. file links

14.1.3. inode number

Each inode has a unique number (the inode number). You can see the inode numbers with
the ls -li command.

student@linux:~/test$ touch file1
student@linux:~/test$ touch file2
student@linux:~/test$ touch file3
student@linux:~/test$ ls -li
total 12
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817267 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
student@linux:~/test$

These three files were created one after the other and got three different inodes (the first
column). All the information you see with this ls command resides in the inode, except for
the filename (which is contained in the directory).

14.1.4. inode and file contents

Let’s put some data in one of the files.

student@linux:~/test$ ls -li
total 16
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817270 -rw-rw-r-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
student@linux:~/test$ cat file2
It is winter now and it is very cold.
We do not like the cold, we prefer hot summer nights.
student@linux:~/test$

The data that is displayed by the cat command is not in the inode, but somewhere else on
the disk. The inode contains a pointer to that data.

14.2. about directories

14.2.1. a directory is a table

A directory is a special kind of file that contains a table which maps filenames to inodes.
Listing our current directory with ls -aliwill display the contents of the directory file.

student@linux:~/test$ ls -ali
total 32
817262 drwxrwxr-x 2 paul paul 4096 Feb 5 15:42 .
800768 drwx------ 16 paul paul 4096 Feb 5 15:42 ^.
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817270 -rw-rw-r-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
student@linux:~/test$

114

14.3. hard links

14.2.2. . and ..

You can see five names, and the mapping to their five inodes. The dot . is a mapping to
itself, and the dotdot ^. is a mapping to the parent directory. The three other names are
mappings to different inodes.

14.3. hard links

14.3.1. creating hard links

When we create a hard link to a file with ln, an extra entry is added in the directory. A new
file name is mapped to an existing inode.

student@linux:~/test$ ln file2 hardlink_to_file2
student@linux:~/test$ ls -li
total 24
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817270 -rw-rw-r-- 2 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
817270 -rw-rw-r-- 2 paul paul 92 Feb 5 15:42 hardlink_to_file2
student@linux:~/test$

Both files have the same inode, so they will always have the same permissions and the same
owner. Both files will have the same content. Actually, both files are equal now, meaning
you can safely remove the original file, the hardlinked file will remain. The inode contains a
counter, counting the number of hard links to itself. When the counter drops to zero, then
the inode is emptied.

14.3.2. finding hard links

You can use the find command to look for files with a certain inode. The screenshot below
shows how to search for all filenames that point to inode 817270. Remember that an inode
number is unique to its partition.

student@linux:~/test$ find / -inum 817270 2> /dev/null
/home/paul/test/file2
/home/paul/test/hardlink_to_file2

14.4. symbolic links

Symbolic links (sometimes called soft links) do not link to inodes, but create a name to
namemapping. Symbolic links are created with ln -s. As you can see below, the symbolic
link gets an inode of its own.

student@linux:~/test$ ln -s file2 symlink_to_file2
student@linux:~/test$ ls -li
total 32
817273 -rw-rw-r-- 1 paul paul 13 Feb 5 17:06 file1
817270 -rw-rw-r-- 2 paul paul 106 Feb 5 17:04 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
817270 -rw-rw-r-- 2 paul paul 106 Feb 5 17:04 hardlink_to_file2
817267 lrwxrwxrwx 1 paul paul 5 Feb 5 16:55 symlink_to_file2 -> file2
student@linux:~/test$

115

14. file links

Permissions on a symbolic link have no meaning, since the permissions of the target apply.
Hard links are limited to their own partition (because they point to an inode), symbolic links
can link anywhere (other file systems, even networked).

14.5. removing links

Links can be removed with rm.

student@linux:~$ touch data.txt
student@linux:~$ ln -s data.txt sl_data.txt
student@linux:~$ ln data.txt hl_data.txt
student@linux:~$ rm sl_data.txt
student@linux:~$ rm hl_data.txt

14.6. practice : links

1. Create two files named winter.txt and summer.txt, put some text in them.

2. Create a hard link to winter.txt named hlwinter.txt.

3. Display the inode numbers of these three files, the hard links should have the same in-
ode.

4. Use the find command to list the two hardlinked files

5. Everything about a file is in the inode, except two things : name them!

6. Create a symbolic link to summer.txt called slsummer.txt.

7. Find all files with inode number 2. What does this information tell you ?

8. Look at the directories /etc/init.d/ /etc/rc2.d/ /etc/rc3.d/ ... do you see the links ?

9. Look in /lib with ls -l...

10. Use find to look in your home directory for regular files that have more than one hard
link (hint: this is identical to all regular files that do not have exactly one hard link).

14.7. solution : links

1. Create two files named winter.txt and summer.txt, put some text in them.

echo cold > winter.txt ; echo hot > summer.txt

2. Create a hard link to winter.txt named hlwinter.txt.

ln winter.txt hlwinter.txt

3. Display the inode numbers of these three files, the hard links should have the same in-
ode.

ls -li winter.txt summer.txt hlwinter.txt

4. Use the find command to list the two hardlinked files

116

14.7. solution : links

find . -inum xyz #replace xyz with the inode number

5. Everything about a file is in the inode, except two things : name them!

The name of the file is in a directory, and the contents is somewhere on the disk.

6. Create a symbolic link to summer.txt called slsummer.txt.

ln -s summer.txt slsummer.txt

7. Find all files with inode number 2. What does this information tell you ?

It tells you there is more than one inode table (one for every formatted partition + virtual file
systems)

8. Look at the directories /etc/init.d/ /etc/rc.d/ /etc/rc3.d/ ... do you see the links ?

ls -l /etc/init.d

ls -l /etc/rc2.d

ls -l /etc/rc3.d

9. Look in /lib with ls -l...

ls -l /lib

10. Use find to look in your home directory for regular files that have more than one hard
link (hint: this is identical to all regular files that do not have exactly one hard link).

find ~ ! -links 1 -type f

117

Part XI.

working with text

119

15. working with file contents

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

In this chapter we will look at the contents of text files with head, tail, cat, tac,
more, less and strings.

We will also get a glimpse of the possibilities of tools like cat on the command line.

15.1. head

You can use head to display the first ten lines of a file.

student@linux~$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
root@linux~#

The head command can also display the first n lines of a file.

student@linux~$ head -4 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
student@linux~$

And head can also display the first n bytes.

student@linux~$ head -c14 /etc/passwd
root:x:0:0:roostudent@linux~$

121

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

15. working with file contents

15.2. tail

Similar to head, the tail command will display the last ten lines of a file.

student@linux~$ tail /etc/services
vboxd 20012/udp
binkp 24554/tcp # binkp fidonet protocol
asp 27374/tcp # Address Search Protocol
asp 27374/udp
csync2 30865/tcp # cluster synchronization tool
dircproxy 57000/tcp # Detachable IRC Proxy
tfido 60177/tcp # fidonet EMSI over telnet
fido 60179/tcp # fidonet EMSI over TCP

Local services
student@linux~$

You can give tail the number of lines you want to see.

student@linux~$ tail -3 /etc/services
fido 60179/tcp # fidonet EMSI over TCP

Local services
student@linux~$

The tail command has other useful options, some of whichwewill use during this course.

15.3. cat

The cat command is one of the most universal tools, yet all it does is copy standard input
to standard output. In combination with the shell this can be very powerful and diverse.
Some examples will give a glimpse into the possibilities. The first example is simple, you can
use cat to display a file on the screen. If the file is longer than the screen, it will scroll to the
end.

student@linux:~$ cat /etc/resolv.conf
domain linux-training.be
search linux-training.be
nameserver 192.168.1.42

15.3.1. concatenate

cat is short for concatenate. One of the basic uses of cat is to concatenate files into a bigger
(or complete) file.

student@linux:~$ echo one >part1
student@linux:~$ echo two >part2
student@linux:~$ echo three >part3
student@linux:~$ cat part1
one
student@linux:~$ cat part2
two
student@linux:~$ cat part3

122

15.3. cat

three
student@linux:~$ cat part1 part2 part3
one
two
three
student@linux:~$ cat part1 part2 part3 >all
student@linux:~$ cat all
one
two
three
student@linux:~$

15.3.2. create files

You can use cat to create flat text files. Type the cat > winter.txt command as shown
in the screenshot below. Then type one or more lines, finishing each line with the enter key.
After the last line, type and hold the Control (Ctrl) key and press d.

student@linux:~$ cat > winter.txt
It is very cold today!
student@linux:~$ cat winter.txt
It is very cold today!
student@linux:~$

The Ctrl d key combination will send an EOF (End of File) to the running process ending the
cat command.

15.3.3. custom end marker

You can choose an end marker for catwith ^< as is shown in this screenshot. This construc-
tion is called a here directive and will end the cat command.

student@linux:~$ cat > hot.txt <<stop
> It is hot today!
> Yes it is summer.
> stop
student@linux:~$ cat hot.txt
It is hot today!
Yes it is summer.
student@linux:~$

15.3.4. copy files

In the third example you will see that cat can be used to copy files. We will explain in detail
what happens here in the bash shell chapter.

student@linux:~$ cat winter.txt
It is very cold today!
student@linux:~$ cat winter.txt > cold.txt
student@linux:~$ cat cold.txt
It is very cold today!
student@linux:~$

123

15. working with file contents

15.4. tac

Just one example will show you the purpose of tac (cat backwards).

student@linux:~$ cat count
one
two
three
four
student@linux:~$ tac count
four
three
two
one

15.5. more and less

The more command is useful for displaying files that take up more than one screen. More
will allow you to see the contents of the file page by page. Use the space bar to see the next
page, or q to quit. Some people prefer the less command to more.

15.6. strings

With the strings command you can display readable ascii strings found in (binary) files.
This example locates the ls binary then displays readable strings in the binary file (output is
truncated).

student@linux:~$ which ls
/bin/ls
student@linux:~$ strings /bin/ls
/lib/ld-linux.so.2
librt.so.1
^_gmon_start^_
_Jv_RegisterClasses
clock_gettime
libacl.so.1
^^.

15.7. practice: file contents

1. Display the first 12 lines of /etc/services.
2. Display the last line of /etc/passwd.
3. Use cat to create a file named count.txt that looks like this:

One
Two
Three
Four
Five

124

15.8. solution: file contents

4. Use cp to make a backup of this file to cnt.txt.
5. Use cat to make a backup of this file to catcnt.txt.
6. Display catcnt.txt, but with all lines in reverse order (the last line first).

7. Use more to display /etc/services.
8. Display the readable character strings from the /usr/bin/passwd command.

9. Use ls to find the biggest file in /etc.
10. Open two terminal windows (or tabs) and make sure you are in the same directory in
both. Type echo this is the first line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo This is another line ^> tailing.txt (note the double »), verify that the tail -f
in the second terminal shows both lines. Stop the tail -fwith Ctrl-C.
11. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
followed by the contents of /etc/passwd.
12. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
preceded by the contents of /etc/passwd.

15.8. solution: file contents

1. Display the first 12 lines of /etc/services.

head -12 /etc/services

2. Display the last line of /etc/passwd.

tail -1 /etc/passwd

3. Use cat to create a file named count.txt that looks like this:

cat > count.txt
One
Two
Three
Four
Five (followed by Ctrl-d)

4. Use cp to make a backup of this file to cnt.txt.

cp count.txt cnt.txt

5. Use cat to make a backup of this file to catcnt.txt.

cat count.txt > catcnt.txt

6. Display catcnt.txt, but with all lines in reverse order (the last line first).

tac catcnt.txt

7. Use more to display /etc/services.

125

15. working with file contents

more /etc/services

8. Display the readable character strings from the /usr/bin/passwd command.

strings /usr/bin/passwd

9. Use ls to find the biggest file in /etc.

ls -lrS /etc

10. Open two terminal windows (or tabs) and make sure you are in the same directory in
both. Type echo this is the first line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo This is another line ^> tailing.txt (note the double »), verify that the tail -f
in the second terminal shows both lines. Stop the tail -fwith Ctrl-C.
11. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
followed by the contents of /etc/passwd.

cat /etc/passwd >> tailing.txt

12. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
preceded by the contents of /etc/passwd.

mv tailing.txt tmp.txt ; cat /etc/passwd tmp.txt > tailing.txt

126

16. I/O redirection

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

One of the powers of the Unix command line is the use of input/output redirection and
pipes.

This chapter explains redirection of input, output and error streams.

16.1. stdin, stdout, and stderr

The bash shell has three basic streams; it takes input from stdin (stream 0), it sends output
to stdout (stream 1) and it sends error messages to stderr (stream 2) .

The drawing below has a graphical interpretation of these three streams.

The keyboard often serves as stdin, whereas stdout and stderr both go to the display. This
can be confusing to new Linux users because there is no obvious way to recognize stdout
from stderr. Experienced users know that separating output from errors can be very use-
ful.

The next sections will explain how to redirect these streams.

16.2. output redirection

16.2.1. > stdout

stdout can be redirected with a greater than sign. While scanning the line, the shell will
see the > sign and will clear the file.

127

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

16. I/O redirection

The > notation is in fact the abbreviation of 1> (stdout being referred to as stream 1).

[student@linux ~]$ echo It is cold today!
It is cold today!
[student@linux ~]$ echo It is cold today! > winter.txt
[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$

Note that the bash shell effectively removes the redirection from the command line before
argument 0 is executed. This means that in the case of this command:

echo hello > greetings.txt

the shell only counts twoarguments (echo = argument0, hello = argument 1). The redirection
is removed before the argument counting takes place.

16.2.2. output file is erased

While scanning the line, the shell will see the > sign and will clear the file! Since this
happens before resolving argument 0, this means that even when the command fails, the
file will have been cleared!

[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found
[student@linux ~]$ cat winter.txt
[student@linux ~]$

16.2.3. noclobber

Erasing a file while using > can be prevented by setting the noclobber option.

[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$ set -o noclobber
[student@linux ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[student@linux ~]$ set +o noclobber
[student@linux ~]$

128

16.3. error redirection

16.2.4. overruling noclobber

The noclobber can be overruled with >|.

[student@linux ~]$ set -o noclobber
[student@linux ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[student@linux ~]$ echo It is very cold today! >| winter.txt
[student@linux ~]$ cat winter.txt
It is very cold today!
[student@linux ~]$

16.2.5. » append

Use ^> to append output to a file.

[student@linux ~]$ echo It is cold today! > winter.txt
[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$ echo Where is the summer ? >> winter.txt
[student@linux ~]$ cat winter.txt
It is cold today!
Where is the summer ?
[student@linux ~]$

16.3. error redirection

16.3.1. 2> stderr

Redirecting stderr is done with 2>. This can be very useful to prevent error messages from
cluttering your screen.

The screenshotbelowshows redirectionof stdout to afile, andstderr to/dev/null. Writing
1> is the same as >.

[student@linux ~]$ find / > allfiles.txt 2> /dev/null
[student@linux ~]$

16.3.2. 2>&1

To redirect both stdout and stderr to the same file, use 2>&1.

[student@linux ~]$ find / > allfiles_and_errors.txt 2>&1
[student@linux ~]$

Note that the order of redirections is significant. For example, the command

129

16. I/O redirection

ls > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the
file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard errormade a copy of the
standard output before the standard output was redirected to dirlist.

16.4. output redirection and pipes

By default you cannot grep inside stderrwhen using pipes on the command line, because
only stdout is passed.

student@linux:~$ rm file42 file33 file1201 | grep file42
rm: cannot remove ‘file42’: No such file or directory
rm: cannot remove ‘file33’: No such file or directory
rm: cannot remove ‘file1201’: No such file or directory

With 2>&1 you can force stderr to go to stdout. This enables the next command in the pipe
to act on both streams.

student@linux:~$ rm file42 file33 file1201 2>&1 | grep file42
rm: cannot remove ‘file42’: No such file or directory

You cannot use both 1>&2 and 2>&1 to switch stdout and stderr.

student@linux:~$ rm file42 file33 file1201 2>&1 1>&2 | grep file42
rm: cannot remove ‘file42’: No such file or directory
student@linux:~$ echo file42 2>&1 1>&2 | sed 's/file42/FILE42/'
FILE42

You need a third stream to switch stdout and stderr after a pipe symbol.

student@linux:~$ echo file42 3>&1 1>&2 2>&3 | sed 's/file42/FILE42/'
file42
student@linux:~$ rm file42 3>&1 1>&2 2>&3 | sed 's/file42/FILE42/'
rm: cannot remove ‘FILE42’: No such file or directory

16.5. joining stdout and stderr

The &> construction will put both stdout and stderr in one stream (to a file).

student@linux:~$ rm file42 &> out_and_err
student@linux:~$ cat out_and_err
rm: cannot remove ‘file42’: No such file or directory
student@linux:~$ echo file42 &> out_and_err
student@linux:~$ cat out_and_err
file42
student@linux:~$

130

16.6. input redirection

16.6. input redirection

16.6.1. < stdin

Redirecting stdin is done with < (short for 0<).

[student@linux ~]$ cat < text.txt
one
two
[student@linux ~]$ tr 'onetw' 'ONEZZ' < text.txt
ONE
ZZO
[student@linux ~]$

16.6.2. « here document

The here document (sometimes called here-is-document) is a way to append input until a
certain sequence (usually EOF) is encountered. The EOFmarker can be typed literally or can
be called with Ctrl-D.

[student@linux ~]$ cat <<EOF > text.txt
> one
> two
> EOF
[student@linux ~]$ cat text.txt
one
two
[student@linux ~]$ cat <<brol > text.txt
> brel
> brol
[student@linux ~]$ cat text.txt
brel
[student@linux ~]$

16.6.3. «< here string

The here string can be used to directly pass strings to a command. The result is the same
as using echo string | command (but you have one less process running).

student@linux~$ base64 <<< linux-training.be
bGludXgtdHJhaW5pbmcuYmUK
student@linux~$ base64 -d <<< bGludXgtdHJhaW5pbmcuYmUK
linux-training.be

See rfc 3548 for more information about base64.

131

16. I/O redirection

16.7. confusing redirection

The shell will scan the whole line before applying redirection. The following command line
is very readable and is correct.

cat winter.txt > snow.txt 2> errors.txt

But this one is also correct, but less readable.

2> errors.txt cat winter.txt > snow.txt

Even this will be understood perfectly by the shell.

< winter.txt > snow.txt 2> errors.txt cat

16.8. quick file clear

So what is the quickest way to clear a file ?

>foo

And what is the quickest way to clear a file when the noclobber option is set ?

>|bar

16.9. practice: input/output redirection

1. Activate the noclobber shell option.

2. Verify that noclobber is active by repeating an ls on /etc/ with redirected output to a
file.

3. When listing all shell options, which character represents the noclobber option ?

4. Deactivate the noclobber option.

5. Make sure youhave two shells openon the samecomputer. Create an empty tailing.txt
file. Then type tail -f tailing.txt. Use the second shell to append a line of text to that
file. Verify that the first shell displays this line.

6. Create a file that contains the names of five people. Use cat and output redirection to
create the file and use a here document to end the input.

132

16.10. solution: input/output redirection

16.10. solution: input/output redirection

1. Activate the noclobber shell option.

set -o noclobber
set -C

2. Verify that noclobber is active by repeating an ls on /etc/ with redirected output to a
file.

ls /etc > etc.txt
ls /etc > etc.txt (should not work)

3. When listing all shell options, which character represents the noclobber option ?

echo $- (noclobber is visible as C)

4. Deactivate the noclobber option.

set +o noclobber

5. Make sure youhave two shells openon the samecomputer. Create an empty tailing.txt
file. Then type tail -f tailing.txt. Use the second shell to append a line of text to that
file. Verify that the first shell displays this line.

student@linux:~$ > tailing.txt
student@linux:~$ tail -f tailing.txt
hello
world

in the other shell:
student@linux:~$ echo hello >> tailing.txt
student@linux:~$ echo world >> tailing.txt

6. Create a file that contains the names of five people. Use cat and output redirection to
create the file and use a here document to end the input.

student@linux:~$ cat > tennis.txt << ace
> Justine Henin
> Venus Williams
> Serena Williams
> Martina Hingis
> Kim Clijsters
> ace
student@linux:~$ cat tennis.txt
Justine Henin
Venus Williams
Serena Williams
Martina Hingis
Kim Clijsters
student@linux:~$

133

17. regular expressions

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Regular expressions are a very powerful tool in Linux. They can be used with a variety of
programs like bash, vi, rename, grep, sed, and more.

This chapter introduces you to the basics of regular expressions.

17.1. regex versions

There are three different versions of regular expression syntax:

BRE: Basic Regular Expressions
ERE: Extended Regular Expressions
PRCE: Perl Regular Expressions

Depending on the tool being used, one or more of these syntaxes can be used.

For example the grep tool has the -E option to force a string to be read as EREwhile -G forces
BRE and -P forces PRCE.

Note that grep also has -F to force the string to be read literally.

The sed tool also has options to choose a regex syntax.

Read the manual of the tools you use!

17.2. grep

17.2.1. print lines matching a pattern

grep is a popular Linux tool to search for lines that match a certain pattern. Below are some
examples of the simplest regular expressions.

This is the contents of the test file. This file contains three lines (or three newline charac-
ters).

student@linux:~$ cat names
Tania
Laura
Valentina

When grepping for a single character, only the lines containing that character are re-
turned.

135

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

17. regular expressions

student@linux:~$ grep u names
Laura
student@linux:~$ grep e names
Valentina
student@linux:~$ grep i names
Tania
Valentina

The pattern matching in this example should be very straightforward; if the given character
occurs on a line, then grepwill return that line.

17.2.2. concatenating characters

Two concatenated characters will have to be concatenated in the same way to have a
match.

This example demonstrates that ia will match Tania but not Valentina and in will match
Valentina but not Tania.

student@linux:~$ grep a names
Tania
Laura
Valentina
student@linux:~$ grep ia names
Tania
student@linux:~$ grep in names
Valentina
student@linux:~$

17.2.3. one or the other

PRCE and ERE both use the pipe symbol to signify OR. In this example we grep for lines
containing the letter i or the letter a.

student@linux:~$ cat list
Tania
Laura
student@linux:~$ grep -E 'i|a' list
Tania
Laura

Note that we use the -E switch of grep to force interpretion of our string as an ERE.

We need to escape the pipe symbol in a BRE to get the same logical OR.

student@linux:~$ grep -G 'i|a' list
student@linux:~$ grep -G 'i\|a' list
Tania
Laura

136

17.2. grep

17.2.4. one or more

The * signifies zero, one or more occurences of the previous and the + signifies one or more
of the previous.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o*' list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o+' list2
lol
lool
loool
student@linux:~$

17.2.5. match the end of a string

For the following examples, we will use this file.

student@linux:~$ cat names
Tania
Laura
Valentina
Fleur
Floor

The two examples below show how to use the dollar character to match the end of a
string.

student@linux:~$ grep a$ names
Tania
Laura
Valentina
student@linux:~$ grep r$ names
Fleur
Floor

17.2.6. match the start of a string

The caret character (^)will match a string at the start (or the beginning) of a line.

Given the same file as above, here are two examples.

student@linux:~$ grep ^Val names
Valentina
student@linux:~$ grep ^F names
Fleur
Floor

Both the dollar sign and the little hat are called anchors in a regex.

137

17. regular expressions

17.2.7. separating words

Regular expressions use a \b sequence to reference a word separator. Take for example this
file:

student@linux:~$ cat text
The governer is governing.
The winter is over.
Can you get over there?

Simply grepping for overwill give too many results.

student@linux:~$ grep over text
The governer is governing.
The winter is over.
Can you get over there?

Surrounding the searchedwordwith spaces is not a good solution (because other characters
can beword separators). This screenshot below showhow to use \b to find only the searched
word:

student@linux:~$ grep '\bover\b' text
The winter is over.
Can you get over there?
student@linux:~$

Note that grep also has a -w option to grep for words.

student@linux:~$ cat text
The governer is governing.
The winter is over.
Can you get over there?
student@linux:~$ grep -w over text
The winter is over.
Can you get over there?
student@linux:~$

17.2.8. grep features

Sometimes it is easier to combine a simple regex with grep options, than it is to write amore
complex regex. These options where discussed before:

grep -i
grep -v
grep -w
grep -A5
grep -B5
grep -C5

138

17.3. rename

17.2.9. preventing shell expansion of a regex

The dollar sign is a special character, both for the regex and also for the shell (remember vari-
ables and embedded shells). Therefore it is advised to always quote the regex, this prevents
shell expansion.

student@linux:~$ grep 'r$' names
Fleur
Floor

17.3. rename

17.3.1. the rename command

On Debian Linux the /usr/bin/rename command is a link to /usr/bin/prename installed
by the perl package.

student@linux ~ $ dpkg -S $(readlink -f $(which rename))
perl: /usr/bin/prename

Red Hat derived systems do not install the same rename command, so this section does not
describe rename on Red Hat (unless you copy the perl script manually).

There is often confusion on the internet about the rename command because
solutions that work fine in Debian (and Ubuntu, xubuntu, Mint, ^^.) cannot be
used in Red Hat (and CentOS, Fedora, ^^.).

17.3.2. perl

The rename command is actually a perl script that uses perl regular expressions. The
complete manual for these can be found by typing perldoc perlrequick (after installing
perldoc).

root@linux:~# aptitude install perl-doc
The following NEW packages will be installed:

perl-doc
0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 8,170 kB of archives. After unpacking 13.2 MB will be used.
Get: 1 http:^/mirrordirector.raspbian.org/raspbian/ wheezy/main perl-do^^.
Fetched 8,170 kB in 19s (412 kB/s)
Selecting previously unselected package perl-doc.
(Reading database ^^. 67121 files and directories currently installed.)
Unpacking perl-doc (from ^^./perl-doc_5.14.2-21+rpi2_all.deb) ^^.
Adding 'diversion of /usr/bin/perldoc to /usr/bin/perldoc.stub by perl-doc'
Processing triggers for man-db ^^.
Setting up perl-doc (5.14.2-21+rpi2) ^^.

root@linux:~# perldoc perlrequick

139

17. regular expressions

17.3.3. well known syntax

The most common use of the rename is to search for filenames matching a certain string
and replacing this string with an other string.
This is often presented as s/string/other string/ as seen in this example:

student@linux ~ $ ls
abc allfiles.TXT bllfiles.TXT Scratch tennis2.TXT
abc.conf backup cllfiles.TXT temp.TXT tennis.TXT
student@linux ~ $ rename 's/TXT/text/' *
student@linux ~ $ ls
abc allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup cllfiles.text temp.text tennis.text

And here is another example that uses rename with the well know syntax to change the
extensions of the same files once more:

student@linux ~ $ ls
abc allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup cllfiles.text temp.text tennis.text
student@linux ~ $ rename 's/text/txt/' *.text
student@linux ~ $ ls
abc allfiles.txt bllfiles.txt Scratch tennis2.txt
abc.conf backup cllfiles.txt temp.txt tennis.txt
student@linux ~ $

These two examples appear to work because the strings we used only exist at the end of the
filename. Remember that file extensions have no meaning in the bash shell.

The next example shows what can go wrong with this syntax.

student@linux ~ $ touch atxt.txt
student@linux ~ $ rename 's/txt/problem/' atxt.txt
student@linux ~ $ ls
abc allfiles.txt backup cllfiles.txt temp.txt tennis.txt
abc.conf aproblem.txt bllfiles.txt Scratch tennis2.txt
student@linux ~ $

Only the first occurrence of the searched string is replaced.

17.3.4. a global replace

The syntax used in the previous example can be described as s/regex/replacement/. This is
simple and straightforward, you enter a regex between the first two slashes and a replace-
ment string between the last two.

This example expands this syntax only a little, by adding a modifier.

student@linux ~ $ rename -n 's/TXT/txt/g' aTXT.TXT
aTXT.TXT renamed as atxt.txt
student@linux ~ $

The syntax we use now can be described as s/regex/replacement/g where s signifies
switch and g stands for global.
Note that this example used the -n switch to show what is being done (instead of actually
renaming the file).

140

17.4. sed

17.3.5. case insensitive replace

Another modifier that can be useful is i. this example shows how to replace a case insensi-
tive string with another string.

student@linux:~/files$ ls
file1.text file2.TEXT file3.txt
student@linux:~/files$ rename 's/.text/.txt/i' *
student@linux:~/files$ ls
file1.txt file2.txt file3.txt
student@linux:~/files$

17.3.6. renaming extensions

Command line Linux has no knowledge of MS-DOS like extensions, butmany end users and
graphical application do use them.

Here is an example on how to use rename to only rename the file extension. It uses the dollar
sign to mark the ending of the filename.

student@linux ~ $ ls *.txt
allfiles.txt bllfiles.txt cllfiles.txt really.txt.txt temp.txt tennis.txt
student@linux ~ $ rename 's/.txt$/.TXT/' *.txt
student@linux ~ $ ls *.TXT
allfiles.TXT bllfiles.TXT cllfiles.TXT really.txt.TXT
temp.TXT tennis.TXT
student@linux ~ $

Note that the dollar sign in the regex means at the end. Without the dollar sign this
command would fail on the really.txt.txt file.

17.4. sed

17.4.1. stream editor

The stream editor or short sed uses regex for stream editing.

In this example sed is used to replace a string.

echo Sunday | sed 's/Sun/Mon/'
Monday

The slashes can be replaced by a couple of other characters, which can be handy in some
cases to improve readability.

echo Sunday | sed 's:Sun:Mon:'
Monday
echo Sunday | sed 's_Sun_Mon_'
Monday
echo Sunday | sed 's|Sun|Mon|'
Monday

141

17. regular expressions

17.4.2. interactive editor

While sed is meant to be used in a stream, it can also be used interactively on a file.

student@linux:~/files$ echo Sunday > today
student@linux:~/files$ cat today
Sunday
student@linux:~/files$ sed -i 's/Sun/Mon/' today
student@linux:~/files$ cat today
Monday

17.4.3. simple back referencing

The ampersand character can be used to reference the searched (and found) string.

In this example the ampersand is used to double the occurence of the found string.

echo Sunday | sed 's/Sun/^&/'
SunSunday
echo Sunday | sed 's/day/^&/'
Sundayday

17.4.4. back referencing

Parentheses (often called round brackets) are used to group sections of the regex so they
can leter be referenced.

Consider this simple example:

student@linux:~$ echo Sunday | sed 's_\(Sun\)_\1ny_'
Sunnyday
student@linux:~$ echo Sunday | sed 's_\(Sun\)_\1ny \1_'
Sunny Sunday

17.4.5. a dot for any character

In a regex a simple dot can signify any character.

student@linux:~$ echo 2014-04-01 | sed 's/....-^.-^./YYYY-MM-DD/'
YYYY-MM-DD
student@linux:~$ echo abcd-ef-gh | sed 's/....-^.-^./YYYY-MM-DD/'
YYYY-MM-DD

17.4.6. multiple back referencing

Whenmore than onepair of parentheses is used, each of themcanbe referenced separately
by consecutive numbers.

student@linux:~$ echo 2014-04-01 | sed 's/\(....\)-\(^.\)-\(^.\)/\1+\2+\3/'
2014+04+01
student@linux:~$ echo 2014-04-01 | sed 's/\(....\)-\(^.\)-\(^.\)/\3:\2:\1/'
01:04:2014

This feature is called grouping.

142

17.4. sed

17.4.7. white space

The \s can refer to white space such as a space or a tab.

This example looks for white spaces (\s) globally and replaces them with 1 space.

student@linux:~$ echo -e 'today\tis\twarm'
today is warm
student@linux:~$ echo -e 'today\tis\twarm' | sed 's_\s_ _g'
today is warm

17.4.8. optional occurrence

A question mark signifies that the previous is optional.

The example below searches for three consecutive letter o, but the third o is optional.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'ooo?' list2
lool
loool
student@linux:~$ cat list2 | sed 's/ooo\?/A/'
ll
lol
lAl
lAl

17.4.9. exactly n times

You can demand an exact number of times the oprevious has to occur.

This example wants exactly three o’s.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o{3}' list2
loool
student@linux:~$ cat list2 | sed 's/o\{3\}/A/'
ll
lol
lool
lAl
student@linux:~$

143

17. regular expressions

17.4.10. between n and m times

And here we demand exactly fromminimum 2 to maximum 3 times.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o{2,3}' list2
lool
loool
student@linux:~$ grep 'o\{2,3\}' list2
lool
loool
student@linux:~$ cat list2 | sed 's/o\{2,3\}/A/'
ll
lol
lAl
lAl
student@linux:~$

17.5. bash history

The bash shell can also interprete some regular expressions.

This example shows how to manipulate the exclamation mask history feature of the bash
shell.

student@linux:~$ mkdir hist
student@linux:~$ cd hist/
student@linux:~/hist$ touch file1 file2 file3
student@linux:~/hist$ ls -l file1
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file1
student@linux:~/hist$!l
ls -l file1
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file1
student@linux:~/hist$!l:s/1/3
ls -l file3
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file3
student@linux:~/hist$

This also works with the history numbers in bash.

student@linux:~/hist$ history 6
2089 mkdir hist
2090 cd hist/
2091 touch file1 file2 file3
2092 ls -l file1
2093 ls -l file3
2094 history 6

student@linux:~/hist$!2092
ls -l file1
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file1
student@linux:~/hist$!2092:s/1/2
ls -l file2

144

17.5. bash history

-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file2
student@linux:~/hist$

145

Part XII.

user group management

147

18. groups

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Users can be listed in groups. Groups allow you to set permissions on the group level instead
of having to set permissions for every individual user.

Every Unix or Linux distribution will have a graphical tool to manage groups. Novice users
are advised to use this graphical tool. More experienced users can use command line tools
to manage users, but be careful: Some distributions do not allow the mixed use of GUI and
CLI tools tomanage groups (YaST in Novell Suse). Senior administrators can edit the relevant
files directly with vi or vigr.

18.1. groupadd

Groups canbe createdwith the groupadd command. The example below shows the creation
of five (empty) groups.

root@linux:~# groupadd tennis
root@linux:~# groupadd football
root@linux:~# groupadd snooker
root@linux:~# groupadd formula1
root@linux:~# groupadd salsa

18.2. group file

Users can be amember of several groups. Groupmembership is defined by the /etc/group
file.

root@linux:~# tail -5 /etc/group
tennis:x:1006:
football:x:1007:
snooker:x:1008:
formula1:x:1009:
salsa:x:1010:
root@linux:~#

The first field is the group’s name. The second field is the group’s (encrypted) password (can
be empty). The third field is the group identification or GID. The fourth field is the list of
members, these groups have no members.

149

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

18. groups

18.3. groups

A user can type the groups command to see a list of groups where the user belongs to.

[harry@linux ~]$ groups
harry sports
[harry@linux ~]$

18.4. usermod

Group membership can be modified with the useradd or usermod command.

root@linux:~# usermod -a -G tennis inge
root@linux:~# usermod -a -G tennis katrien
root@linux:~# usermod -a -G salsa katrien
root@linux:~# usermod -a -G snooker sandra
root@linux:~# usermod -a -G formula1 annelies
root@linux:~# tail -5 /etc/group
tennis:x:1006:inge,katrien
football:x:1007:
snooker:x:1008:sandra
formula1:x:1009:annelies
salsa:x:1010:katrien
root@linux:~#

Be careful when using usermod to add users to groups. By default, the usermod command
will remove the user from every group of which he is a member if the group is not listed in
the command! Using the -a (append) switch prevents this behaviour.

18.5. groupmod

You can change the group name with the groupmod command.

root@linux:~# groupmod -n darts snooker
root@linux:~# tail -5 /etc/group
tennis:x:1006:inge,katrien
football:x:1007:
formula1:x:1009:annelies
salsa:x:1010:katrien
darts:x:1008:sandra

18.6. groupdel

You can permanently remove a group with the groupdel command.

root@linux:~# groupdel tennis
root@linux:~#

150

18.7. gpasswd

18.7. gpasswd

You can delegate control of groupmembership to another user with the gpasswd command.
In the examplebelowwedelegatepermissions to addand removegroupmembers to serena
for the sports group. Then we su to serena and add harry to the sports group.

[root@linux ~^# gpasswd -A serena sports
[root@linux ~^# su - serena
[serena@linux ~]$ id harry
uid=516(harry) gid=520(harry) groups=520(harry)
[serena@linux ~]$ gpasswd -a harry sports
Adding user harry to group sports
[serena@linux ~]$ id harry
uid=516(harry) gid=520(harry) groups=520(harry),522(sports)
[serena@linux ~]$ tail -1 /etc/group
sports:x:522:serena,venus,harry
[serena@linux ~]$

Group administrators do not have to be a member of the group. They can remove them-
selves from a group, but this does not influence their ability to add or remove members.

[serena@linux ~]$ gpasswd -d serena sports
Removing user serena from group sports
[serena@linux ~]$ exit

Information about group administrators is kept in the /etc/gshadow file.

[root@linux ~^# tail -1 /etc/gshadow
sports:!:serena:venus,harry
[root@linux ~^#

To remove all group administrators fromagroup, use the gpasswd command to set an empty
administrators list.

[root@linux ~^# gpasswd -A "" sports

18.8. newgrp

You can start a child shell with a new temporary primary group using the newgrp com-
mand.

root@linux:~# mkdir prigroup
root@linux:~# cd prigroup/
root@linux:~/prigroup# touch standard.txt
root@linux:~/prigroup# ls -l
total 0
-rw-r--r--. 1 root root 0 Apr 13 17:49 standard.txt
root@linux:~/prigroup# echo $SHLVL
1
root@linux:~/prigroup# newgrp tennis
root@linux:~/prigroup# echo $SHLVL
2
root@linux:~/prigroup# touch newgrp.txt
root@linux:~/prigroup# ls -l

151

18. groups

total 0
-rw-r--r--. 1 root tennis 0 Apr 13 17:49 newgrp.txt
-rw-r--r--. 1 root root 0 Apr 13 17:49 standard.txt
root@linux:~/prigroup# exit
exit
root@linux:~/prigroup#

18.9. vigr

Similar to vipw, the vigr command can be used to manually edit the /etc/group file, since
it will do proper locking of the file. Only experienced senior administrators should use vi or
vigr to manage groups.

18.10. practice: groups

1. Create the groups tennis, football and sports.

2. In one command, make venus a member of tennis and sports.

3. Rename the football group to foot.

4. Use vi to add serena to the tennis group.

5. Use the id command to verify that serena is a member of tennis.

6. Make someone responsible formanaging groupmembership of foot and sports. Test that
it works.

18.11. solution: groups

1. Create the groups tennis, football and sports.

groupadd tennis ; groupadd football ; groupadd sports

2. In one command, make venus a member of tennis and sports.

usermod -a -G tennis,sports venus

3. Rename the football group to foot.

groupmod -n foot football

4. Use vi to add serena to the tennis group.

vi /etc/group

5. Use the id command to verify that serena is a member of tennis.

id (and after logoff logon serena should be member)

6. Make someone responsible formanaging groupmembership of foot and sports. Test that
it works.

152

18.11. solution: groups

gpasswd -A (to make manager)

gpasswd -a (to add member)

153

Part XIII.

user management

155

19. introduction to users

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This little chapter will teach you how to identify your user account on a Unix computer using
commands like who am i, id, and more.

In a second part you will learn how to become another user with the su command.

And you will learn how to run a program as another user with sudo.

19.1. whoami

The whoami command tells you your username.

[student@linux ~]$ whoami
paul
[student@linux ~]$

19.2. who

The who command will give you information about who is logged on the system.

[student@linux ~]$ who
root pts/0 2014-10-10 23:07 (10.104.33.101)
paul pts/1 2014-10-10 23:30 (10.104.33.101)
laura pts/2 2014-10-10 23:34 (10.104.33.96)
tania pts/3 2014-10-10 23:39 (10.104.33.91)
[student@linux ~]$

19.3. who am i

With who am i the who commandwill display only the line pointing to your current session.

[student@linux ~]$ who am i
paul pts/1 2014-10-10 23:30 (10.104.33.101)
[student@linux ~]$

157

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

19. introduction to users

19.4. w

The w command shows you who is logged on and what they are doing.

[student@linux ~]$ w
23:34:07 up 31 min, 2 users, load average: 0.00, 0.01, 0.02

USER TTY LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 23:07 15.00s 0.01s 0.01s top
paul pts/1 23:30 7.00s 0.00s 0.00s w
[student@linux ~]$

19.5. id

The id command will give you your user id, primary group id, and a list of the groups that
you belong to.

student@linux:~$ id
uid=1000(paul) gid=1000(paul) groups=1000(paul)

On RHEL/CentOS you will also get SELinux context information with this command.

[root@linux ~^# id
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r\
:unconfined_t:s0-s0:c0.c1023

19.6. su to another user

The su command allows a user to run a shell as another user.

laura@linux:~$ su tania
Password:
tania@linux:/home/laura$

19.7. su to root

Yes you can also su to become root, when you know the root password.

laura@linux:~$ su root
Password:
root@linux:/home/laura#

19.8. su as root

You need to know the password of the user youwant to substitute to, unless your are logged
in as root. The root user can become any existing user without knowing that user’s pass-
word.

root@linux:~# id
uid=0(root) gid=0(root) groups=0(root)
root@linux:~# su - valentina
valentina@linux:~$

158

19.9. su - $username

19.9. su - $username

By default, the su command maintains the same shell environment. To become another
user and also get the target user’s environment, issue the su - command followed by the
target username.

root@linux:~# su laura
laura@linux:/root$ exit
exit
root@linux:~# su - laura
laura@linux:~$ pwd
/home/laura

19.10. su -

When no username is provided to su or su -, the commandwill assume root is the target.

tania@linux:~$ su -
Password:
root@linux:~#

19.11. run a program as another user

The sudo program allows a user to start a program with the credentials of another user. Be-
fore this works, the system administrator has to set up the /etc/sudoers file. This can be
useful to delegate administrative tasks to another user (without giving the root password).

The screenshot below shows the usage of sudo. User paul received the right to run useradd
with the credentials of root. This allows paul to create new users on the system without
becoming root and without knowing the root password.
First the command fails for paul.

student@linux:~$ /usr/sbin/useradd -m valentina
useradd: Permission denied.
useradd: cannot lock /etc/passwd; try again later.

But with sudo it works.

student@linux:~$ sudo /usr/sbin/useradd -m valentina
[sudo] password for paul:
student@linux:~$

19.12. visudo

Check the man page of visudo before playing with the /etc/sudoers file. Editing the su-
doers is out of scope for this fundamentals book.

student@linux:~$ apropos visudo
visudo (8) - edit the sudoers file
student@linux:~$

159

19. introduction to users

19.13. sudo su -

On some Linux systems like Ubuntu and Xubuntu, the root user does not have a password
set. This means that it is not possible to login as root (extra security). To perform tasks as
root, the first user is given all sudo rights via the /etc/sudoers. In fact all users that are
members of the admin group can use sudo to run all commands as root.

root@linux:~# grep admin /etc/sudoers
Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

The end result of this is that the user can type sudo su - and become root without having to
enter the root password. The sudo command does require you to enter your own password.
Thus the password prompt in the screenshot below is for sudo, not for su.

student@linux:~$ sudo su -
Password:
root@linux:~#

19.14. sudo logging

Using sudowithout authorization will result in a severe warning:

student@linux:~$ sudo su -

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for paul:
paul is not in the sudoers file. This incident will be reported.
student@linux:~$

The root user can see this in the /var/log/secure on Red Hat and in /var/log/auth.log
on Debian).

root@linux:~# tail /var/log/secure | grep sudo | tr -s ' '
Apr 13 16:03:42 rhel65 sudo: paul : user NOT in sudoers ; TTY=pts/0 ; PWD=\
/home/paul ; USER=root ; COMMAND=/bin/su -
root@linux:~#

19.15. practice: introduction to users

1. Run a command that displays only your currently logged on user name.

2. Display a list of all logged on users.

3. Display a list of all logged on users including the command they are running at this very
moment.

4. Display your user name and your unique user identification (userid).

160

19.16. solution: introduction to users

5. Use su to switch to another user account (unless you are root, you will need the password
of the other account). And get back to the previous account.

6. Now use su - to switch to another user and notice the difference.

Note that su - gets you into the home directory of Tania.
7. Try to create a new user account (when using your normal user account). this should fail.
(Details on adding user accounts are explained in the next chapter.)

8. Now try the same, but with sudo before your command.

19.16. solution: introduction to users

1. Run a command that displays only your currently logged on user name.

laura@linux:~$ whoami
laura
laura@linux:~$ echo $USER
laura

2. Display a list of all logged on users.

laura@linux:~$ who
laura pts/0 2014-10-13 07:22 (10.104.33.101)
laura@linux:~$

3. Display a list of all logged on users including the command they are running at this very
moment.

laura@linux:~$ w
07:47:02 up 16 min, 2 users, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 10.104.33.101 07:30 6.00s 0.04s 0.00s w
root pts/1 10.104.33.101 07:46 6.00s 0.01s 0.00s sleep 42
laura@linux:~$

4. Display your user name and your unique user identification (userid).

laura@linux:~$ id
uid=1005(laura) gid=1007(laura) groups=1007(laura)
laura@linux:~$

5. Use su to switch to another user account (unless you are root, you will need the password
of the other account). And get back to the previous account.

laura@linux:~$ su tania
Password:
tania@linux:/home/laura$ id
uid=1006(tania) gid=1008(tania) groups=1008(tania)
tania@linux:/home/laura$ exit
laura@linux:~$

6. Now use su - to switch to another user and notice the difference.

161

19. introduction to users

laura@linux:~$ su - tania
Password:
tania@linux:~$ pwd
/home/tania
tania@linux:~$ logout
laura@linux:~$

Note that su - gets you into the home directory of Tania.
7. Try to create a new user account (when using your normal user account). this should fail.
(Details on adding user accounts are explained in the next chapter.)

laura@linux:~$ useradd valentina
-su: useradd: command not found
laura@linux:~$ /usr/sbin/useradd valentina
useradd: Permission denied.
useradd: cannot lock /etc/passwd; try again later.

It is possible that useradd is located in /sbin/useradd on your computer.

8. Now try the same, but with sudo before your command.

laura@linux:~$ sudo /usr/sbin/useradd valentina
[sudo] password for laura:
laura is not in the sudoers file. This incident will be reported.
laura@linux:~$

Notice that laura has no permission to use the sudo on this system.

162

20. user management

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This chapter will teach you how to use useradd, usermod and userdel to create, modify and
remove user accounts.

You will need root access on a Linux computer to complete this chapter.

20.1. user management

User management on Linux can be done in three complementary ways. You can use the
graphical tools provided by your distribution. These tools have a look and feel that depends
on the distribution. If you are a novice Linux user on your home system, then use the graph-
ical tool that is provided by your distribution. This will make sure that you do not run into
problems.

Another option is to use command line tools like useradd, usermod, gpasswd, passwd and
others. Server administrators are likely to use these tools, since they are familiar and very
similar across many different distributions. This chapter will focus on these command line
tools.

A third and rather extremist way is to edit the local configuration files directly using
vi (or vipw/vigr). Do not attempt this as a novice on production systems!

20.2. /etc/passwd

The local user database on Linux (and on most Unixes) is /etc/passwd.

[root@linux ~^# tail /etc/passwd
inge:x:518:524:art dealer:/home/inge:/bin/ksh
ann:x:519:525:flute player:/home/ann:/bin/bash
frederik:x:520:526:rubius poet:/home/frederik:/bin/bash
steven:x:521:527:roman emperor:/home/steven:/bin/bash
pascale:x:522:528:artist:/home/pascale:/bin/ksh
geert:x:524:530:kernel developer:/home/geert:/bin/bash
wim:x:525:531:master damuti:/home/wim:/bin/bash
sandra:x:526:532:radish stresser:/home/sandra:/bin/bash
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

As you can see, this file contains seven columns separated by a colon. The columns contain
the username, an x, the user id, the primary group id, a description, the name of the home
directory, and the login shell.

More information can be found by typing man 5 passwd.

[root@linux ~^# man 5 passwd

163

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

20. user management

20.3. root

The root user also called the superuser is themost powerful account on your Linux system.
This user can do almost anything, including the creation of other users. The root user always
has userid 0 (regardless of the name of the account).

[root@linux ~^# head -1 /etc/passwd
root:x:0:0:root:/root:/bin/bash

20.4. useradd

You can add users with the useradd command. The example below shows how to add a
user named yanina (last parameter) and at the same time forcing the creation of the home
directory (-m), setting the name of the home directory (-d), and setting a description (-c).

[root@linux ~^# useradd -m -d /home/yanina -c "yanina wickmayer" yanina
[root@linux ~^# tail -1 /etc/passwd
yanina:x:529:529:yanina wickmayer:/home/yanina:/bin/bash

The user named yanina received userid 529 and primary group id 529.

20.5. /etc/default/useradd

BothRedHat Enterprise Linux andDebian/Ubuntuhave afile called /etc/default/useradd
that contains some default user options. Besides using cat to display this file, you can also
use useradd -D.

[root@RHEL4 ~^# useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel

20.6. userdel

You can delete the user yanina with userdel. The -r option of userdel will also remove the
home directory.

[root@linux ~^# userdel -r yanina

164

20.7. usermod

20.7. usermod

You can modify the properties of a user with the usermod command. This example uses
usermod to change the description of the user harry.

[root@RHEL4 ~^# tail -1 /etc/passwd
harry:x:516:520:harry potter:/home/harry:/bin/bash
[root@RHEL4 ~^# usermod -c 'wizard' harry
[root@RHEL4 ~^# tail -1 /etc/passwd
harry:x:516:520:wizard:/home/harry:/bin/bash

20.8. creating home directories

The easiest way to create a home directory is to supply the -m option with useradd (it is likely
set as a default option on Linux).

A less easyway is to create a homedirectorymanually with mkdirwhich also requires setting
the owner and the permissions on the directory with chmod and chown (both commands are
discussed in detail in another chapter).

[root@linux ~^# mkdir /home/laura
[root@linux ~^# chown laura:laura /home/laura
[root@linux ~^# chmod 700 /home/laura
[root@linux ~^# ls -ld /home/laura/
drwx------ 2 laura laura 4096 Jun 24 15:17 /home/laura/

20.9. /etc/skel/

When using useradd the -m option, the /etc/skel/ directory is copied to the newly created
home directory. The /etc/skel/ directory contains some (usually hidden) files that contain
profile settings anddefault values for applications. In thisway /etc/skel/ serves as a default
home directory and as a default user profile.

[root@linux ~^# ls -la /etc/skel/
total 48
drwxr-xr-x 2 root root 4096 Apr 1 00:11 .
drwxr-xr-x 97 root root 12288 Jun 24 15:36 ^.
-rw-r--r-- 1 root root 24 Jul 12 2006 .bash_logout
-rw-r--r-- 1 root root 176 Jul 12 2006 .bash_profile
-rw-r--r-- 1 root root 124 Jul 12 2006 .bashrc

20.10. deleting home directories

The -r option of userdelwill make sure that the home directory is deleted together with the
user account.

[root@linux ~^# ls -ld /home/wim/
drwx------ 2 wim wim 4096 Jun 24 15:19 /home/wim/
[root@linux ~^# userdel -r wim
[root@linux ~^# ls -ld /home/wim/
ls: /home/wim/: No such file or directory

165

20. user management

20.11. login shell

The /etc/passwdfile specifies the login shell for theuser. In the screenshot belowyou can
see that user annelies will log in with the /bin/bash shell, and user laura with the /bin/ksh
shell.

[root@linux ~^# tail -2 /etc/passwd
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

You can use the usermod command to change the shell for a user.

[root@linux ~^# usermod -s /bin/bash laura
[root@linux ~^# tail -1 /etc/passwd
laura:x:528:534:art dealer:/home/laura:/bin/bash

20.12. chsh

Users can change their login shell with the chsh command. First, user harry obtains a list
of available shells (he could also have done a cat /etc/shells) and then changes his login
shell to the Korn shell (/bin/ksh). At the next login, harry will default into ksh instead of
bash.

[laura@linux ~]$ chsh -l
/bin/sh
/bin/bash
/sbin/nologin
/usr/bin/sh
/usr/bin/bash
/usr/sbin/nologin
/bin/ksh
/bin/tcsh
/bin/csh
[laura@linux ~]$

Note that the -l option does not exist on Debian and that the above screenshot assumes
that ksh and csh shells are installed.
The screenshot below shows how laura can change her default shell (active on next login).

[laura@linux ~]$ chsh -s /bin/ksh
Changing shell for laura.
Password:
Shell changed.

20.13. practice: user management

1. Create a user account named serena, including a home directory and a description (or
comment) that reads Serena Williams. Do all this in one single command.

2. Create a user named venus, including home directory, bash shell, a description that reads
Venus Williams all in one single command.

3. Verify that bothusershave correct entries in/etc/passwd, /etc/shadowand/etc/group.

166

20.14. solution: user management

4. Verify that their home directory was created.

5. Create a user named einstimewith /bin/date as his default logon shell.

6. What happens when you log on with the einstime user ? Can you think of a useful real
world example for changing a user’s login shell to an application ?

7. Create a file named welcome.txt and make sure every new user will see this file in their
home directory.

8. Verify this setup by creating (and deleting) a test user account.

9. Change the default login shell for the serena user to /bin/bash. Verify before and after
you make this change.

20.14. solution: user management

1. Create a user account named serena, including a home directory and a description (or
comment) that reads Serena Williams. Do all this in one single command.

root@linux:~# useradd -m -c 'Serena Williams' serena

2. Create a user named venus, including home directory, bash shell, a description that reads
Venus Williams all in one single command.

root@linux:~# useradd -m -c "Venus Williams" -s /bin/bash venus

3. Verify that bothusershave correct entries in/etc/passwd, /etc/shadowand/etc/group.

root@linux:~# tail -2 /etc/passwd
serena:x:1008:1010:Serena Williams:/home/serena:/bin/sh
venus:x:1009:1011:Venus Williams:/home/venus:/bin/bash
root@linux:~# tail -2 /etc/shadow
serena:!:16358:0:99999:7^^:
venus:!:16358:0:99999:7^^:
root@linux:~# tail -2 /etc/group
serena:x:1010:
venus:x:1011:

4. Verify that their home directory was created.

root@linux:~# ls -lrt /home | tail -2
drwxr-xr-x 2 serena serena 4096 Oct 15 10:50 serena
drwxr-xr-x 2 venus venus 4096 Oct 15 10:59 venus
root@linux:~#

5. Create a user named einstimewith /bin/date as his default logon shell.

root@linux:~# useradd -s /bin/date einstime

Or even better:

root@linux:~# useradd -s $(which date) einstime

6. What happens when you log on with the einstime user ? Can you think of a useful real
world example for changing a user’s login shell to an application ?

167

20. user management

root@linux:~# su - einstime
Wed Oct 15 11:05:56 UTC 2014 # You get the output of the date command
root@linux:~#

It can be useful whenusers need to access only one application on the server. Just logging in
opens the application for them, and closing the application automatically logs them out.

7. Create a file named welcome.txt and make sure every new user will see this file in their
home directory.

root@linux:~# echo Hello > /etc/skel/welcome.txt

8. Verify this setup by creating (and deleting) a test user account.

root@linux:~# useradd -m test
root@linux:~# ls -l /home/test
total 4
-rw-r--r-- 1 test test 6 Oct 15 11:16 welcome.txt
root@linux:~# userdel -r test
root@linux:~#

9. Change the default login shell for the serena user to /bin/bash. Verify before and after
you make this change.

root@linux:~# grep serena /etc/passwd
serena:x:1008:1010:Serena Williams:/home/serena:/bin/sh
root@linux:~# usermod -s /bin/bash serena
root@linux:~# grep serena /etc/passwd
serena:x:1008:1010:Serena Williams:/home/serena:/bin/bash
root@linux:~#

168

21. user passwords

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This chapter will tell you more about passwords for local users.

Three methods for setting passwords are explained; using the passwd command, using
openssel passwd, and using the crypt function in a C program.

The chapter will also discuss password settings and disabling, suspending or locking ac-
counts.

21.1. passwd

Passwords of users can be set with the passwd command. Users will have to provide their
old password before twice entering the new one.

[tania@linux ~]$ passwd
Changing password for user tania.
Changing password for tania.
(current) UNIX password:
New password:
BAD PASSWORD: The password is shorter than 8 characters
New password:
BAD PASSWORD: The password is a palindrome
New password:
BAD PASSWORD: The password is too similar to the old one
passwd: Have exhausted maximum number of retries for service

As you can see, the passwd tool will do some basic verification to prevent users from using
too simple passwords. The root user does not have to follow these rules (therewill be awarn-
ing though). The root user also does not have to provide the old password before entering
the new password twice.

root@linux:~# passwd tania
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

21.2. shadow file

User passwords are encrypted and kept in /etc/shadow. The /etc/shadow file is read only
and can only be read by root. We will see in the file permissions section how it is possible for
users to change their password. For now, you will have to know that users can change their
password with the /usr/bin/passwd command.

169

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

21. user passwords

[root@linux ~^# tail -4 /etc/shadow
paul:6ikp2Xta5BT.Tml.p$2TZjNnOYNNQKpwLJqoGJbVsZG5/Fti8ovBRd.VzRbiDSl7TEq\
IaSMH.TeBKnTS/SjlMruW8qffC0JNORW.BTW1:16338:0:99999:7^^:
tania:$6$8Z/zovxj$9qvoqT8i9KIrmN.k4EQwAF5ryz5yzNwEvYjAa9L5XVXQu.z4DlpvMREH\
eQpQzvRnqFdKkVj17H5ST.c79HDZw0:16356:0:99999:7^^:
laura:6glDuTY5e$/NYYWLxfHgZFWeoujaXSMcR.Mz.lGOxtcxFocFVJNb98nbTPhWFXfKWG\
SyYh1WCv6763Wq54.w24Yr3uAZBOm/:16356:0:99999:7^^:
valentina:6jrZa6PVI$1uQgqR6En9mZB6mKJ3LXRB4CnFko6LRhbh.v4iqUk9MVreui1lv7\
GxHOUDSKA0N55ZRNhGHa6T2ouFnVno/0o1:16356:0:99999:7^^:
[root@linux ~^#

The /etc/shadow file contains nine colon separated columns. The nine fields contain (from
left to right) the user name, the encrypted password (note that only inge and laura have an
encrypted password), the day the password was last changed (day 1 is January 1, 1970), num-
ber of days the password must be left unchanged, password expiry day, warning number of
days before password expiry, number of days after expiry before disabling the account, and
the day the account was disabled (again, since 1970). The last field has no meaning yet.

All the passwords in the screenshot above are hashes of hunter2.

21.3. encryption with passwd

Passwords are stored in an encrypted format. This encryption is done by the crypt func-
tion. The easiest (and recommended) way to add a user with a password to the system is to
add the user with the useradd -m user command, and then set the user’s password with
passwd.

[root@RHEL4 ~^# useradd -m xavier
[root@RHEL4 ~^# passwd xavier
Changing password for user xavier.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[root@RHEL4 ~^#

21.4. encryption with openssl

Another way to create users with a password is to use the -p option of useradd, but that
option requires an encrypted password. You can generate this encrypted passwordwith the
openssl passwd command.

The openssl passwd commandwill generate several distinct hashes for the same password,
for this it uses a salt.

student@linux:~$ openssl passwd hunter2
86jcUNlnGDFpY
student@linux:~$ openssl passwd hunter2
Yj7mDO9OAnvq6
student@linux:~$ openssl passwd hunter2
YqDcJeGoDbzKA
student@linux:~$

This salt can be chosen and is visible as the first two characters of the hash.

170

21.5. encryption with crypt

student@linux:~$ openssl passwd -salt 42 hunter2
42ZrbtP1Ze8G.
student@linux:~$ openssl passwd -salt 42 hunter2
42ZrbtP1Ze8G.
student@linux:~$ openssl passwd -salt 42 hunter2
42ZrbtP1Ze8G.
student@linux:~$

This example shows how to create a user with password.

root@linux:~# useradd -m -p $(openssl passwd hunter2) mohamed

Note that this command puts the password in your command history!

21.5. encryption with crypt

A third option is to create your own C program using the crypt function, and compile this
into a command.

student@linux:~$ cat MyCrypt.c
#include <stdio.h>
#define ^_USE_XOPEN
#include <unistd.h>

int main(int argc, char^* argv)
{
if(argc^=3)
{

printf("%s\n", crypt(argv[1],argv[2]));
}
else
{

printf("Usage: MyCrypt $password $salt\n");
}

return 0;
}

This little program can be compiled with gcc like this.

student@linux:~$ gcc MyCrypt.c -o MyCrypt -lcrypt

To use it, we need to give two parameters to MyCrypt. The first is the unencrypted password,
the second is the salt. The salt is used to perturb the encryption algorithm in one of 4096
different ways. This variation prevents two users with the same password from having the
same entry in /etc/shadow.

student@linux:~$./MyCrypt hunter2 42
42ZrbtP1Ze8G.
student@linux:~$./MyCrypt hunter2 33
33d6taYSiEUXI

Did you notice that the first two characters of the password are the salt?
The standard output of the crypt function is using the DES algorithm which is old and can
be cracked in minutes. A better method is to use md5 passwords which can be recognized
by a salt starting with 1.

171

21. user passwords

student@linux:~$./MyCrypt hunter2 '$1$42'
$1$42$7l6Y3xT5282XmZrtDOF9f0
student@linux:~$./MyCrypt hunter2 '$6$42'
$6$42$OqFFAVnI3gTSYG0yI9TZWX9cpyQzwIop7HwpG1LLEsNBiMr4w6OvLX1KDa./UpwXfrFk1i^^.

The md5 salt canbeup to eight characters long. The salt is displayed in /etc/shadowbetween
the second and third $, so never use the password as the salt!

student@linux:~$./MyCrypt hunter2 '1hunter2'
1hunter2$YVxrxDmidq7Xf8Gdt6qM2.

21.6. /etc/login.defs

The /etc/login.defs file contains some default settings for user passwords like password
aging and length settings. (You will also find the numerical limits of user ids and group ids
and whether or not a home directory should be created by default).

root@linux:~# grep ^PASS /etc/login.defs
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

Debian also has this file.

root@linux:~# grep PASS /etc/login.defs
PASS_MAX_DAYS Maximum number of days a password may be used.
PASS_MIN_DAYS Minimum number of days allowed between password changes.
PASS_WARN_AGE Number of days warning given before a password expires.
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_WARN_AGE 7
#PASS_CHANGE_TRIES
#PASS_ALWAYS_WARN
#PASS_MIN_LEN
#PASS_MAX_LEN
NO_PASSWORD_CONSOLE
root@linux:~#

21.7. chage

The chage command can be used to set an expiration date for a user account (-E), set a
minimum (-m) and maximum (-M) password age, a password expiration date, and set the
number of warning days before the password expiration date. Much of this functionality is
also available from the passwd command. The -l option of chage will list these settings for
a user.

root@linux:~# chage -l paul
Last password change : Mar 27, 2014
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0

172

21.8. disabling a password

Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
root@linux:~#

21.8. disabling a password

Passwords in /etc/shadow cannot begin with an exclamation mark. When the second field
in /etc/passwd starts with an exclamation mark, then the password can not be used.

Using this feature is often called locking, disabling, or suspending a user account. Besides
vi (or vipw) you can also accomplish this with usermod.
The first command in the next screenshot will show the hashed password of laura in
/etc/shadow. The next command disables the password of laura, making it impossible for
Laura to authenticate using this password.

root@linux:~# grep laura /etc/shadow | cut -c1-70
laura:6JYj4JZqp$stwwWACp3OtE1R2aZuE87j.nbW.puDkNUYVk7mCHfCVMa3CoDUJV
root@linux:~# usermod -L laura

As you can see below, the password hash is simply preceded with an exclamation mark.

root@linux:~# grep laura /etc/shadow | cut -c1-70
laura:!6JYj4JZqp$stwwWACp3OtE1R2aZuE87j.nbW.puDkNUYVk7mCHfCVMa3CoDUJ
root@linux:~#

The root user (and users with sudo rights on su) still will be able to su into the laura account
(because the password is not needed here). Also note that laura will still be able to login if
she has set up passwordless ssh!

root@linux:~# su - laura
laura@linux:~$

You can unlock the account again with usermod -U.

root@linux:~# usermod -U laura
root@linux:~# grep laura /etc/shadow | cut -c1-70
laura:6JYj4JZqp$stwwWACp3OtE1R2aZuE87j.nbW.puDkNUYVk7mCHfCVMa3CoDUJV

Watch out for tiny differences in the command line options of passwd, usermod, and useradd
on different Linux distributions. Verify the local files when using features like "disabling,
suspending, or locking" on user accounts and their passwords.

21.9. editing local files

If you still want tomanually edit the /etc/passwd or /etc/shadow, after knowing these com-
mands for passwordmanagement, then use vipw instead of vi(m) directly. The vipw tool will
do proper locking of the file.

[root@linux ~^# vipw /etc/passwd
vipw: the password file is busy (/etc/ptmp present)

173

21. user passwords

21.10. practice: user passwords

1. Set the password for serena to hunter2.

2. Also set a password for venus and then lock the venus user account with usermod. Verify
the locking in /etc/shadow before and after you lock it.

3. Use passwd -d to disable the serena password. Verify the serena line in /etc/shadow
before and after disabling.

4. What is the difference between locking a user account and disabling a user account’s
password like we just did with usermod -L and passwd -d?

5. Try changing the password of serena to serena as serena.

6. Make sure serena has to change her password in 10 days.

7. Make sure every new user needs to change their password every 10 days.

8. Take a backup as root of /etc/shadow. Use vi to copy an encrypted hunter2 hash from
venus to serena. Can serena now log on with hunter2 as a password ?

9. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

10. Use chsh to list all shells (only works on RHEL/CentOS/Fedora), and compare to cat
/etc/shells.

11. Which useradd option allows you to name a home directory ?

12. How can you see whether the password of user serena is locked or unlocked ? Give a
solution with grep and a solution with passwd.

21.11. solution: user passwords

1. Set the password for serena to hunter2.

root@linux:~# passwd serena
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

2. Also set a password for venus and then lock the venus user account with usermod. Verify
the locking in /etc/shadow before and after you lock it.

root@linux:~# passwd venus
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
root@linux:~# grep venus /etc/shadow | cut -c1-70
venus:6gswzXICW$uSnKFV1kFKZmTPaMVS4AvNA/KO27OxN0v5LHdV9ed0gTyXrjUeM/
root@linux:~# usermod -L venus
root@linux:~# grep venus /etc/shadow | cut -c1-70
venus:!6gswzXICW$uSnKFV1kFKZmTPaMVS4AvNA/KO27OxN0v5LHdV9ed0gTyXrjUeM

Note that usermod -L precedes the password hash with an exclamation mark (!).

3. Use passwd -d to disable the serena password. Verify the serena line in /etc/shadow
before and after disabling.

174

21.11. solution: user passwords

root@linux:~# grep serena /etc/shadow | cut -c1-70
serena:6Es/omrPE$F2Ypu8kpLrfKdW0v/UIwA5jrYyBD2nwZ/dt.i/IypRgiPZSdB/B
root@linux:~# passwd -d serena
passwd: password expiry information changed.
root@linux:~# grep serena /etc/shadow
serena^:16358:0:99999:7^^:
root@linux:~#

4. What is the difference between locking a user account and disabling a user account’s
password like we just did with usermod -L and passwd -d?
Locking will prevent the user from logging on to the system with his password by putting a
! in front of the password in /etc/shadow.
Disabling with passwdwill erase the password from /etc/shadow.
5. Try changing the password of serena to serena as serena.

log on as serena, then execute: passwd serena^^. it should fail!

6. Make sure serena has to change her password in 10 days.

chage -M 10 serena

7. Make sure every new user needs to change their password every 10 days.

vi /etc/login.defs (and change PASS_MAX_DAYS to 10)

8. Take a backup as root of /etc/shadow. Use vi to copy an encrypted hunter2 hash from
venus to serena. Can serena now log on with hunter2 as a password ?

Yes.

9. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

vipw will give a warning when someone else is already using that file (with vipw).

10. Use chsh to list all shells (only works on RHEL/CentOS/Fedora), and compare to cat
/etc/shells.

chsh -l
cat /etc/shells

11. Which useradd option allows you to name a home directory ?

-d

12. How can you see whether the password of user serena is locked or unlocked ? Give a
solution with grep and a solution with passwd.

grep serena /etc/shadow

passwd -S serena

175

Part XIV.

file permissions

177

22. standard file permissions

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/, Bert Van Vreckem,
https://github.com/bertvv/)

This chapter contains details about basic file security through file ownership and file permis-
sions.

22.1. file ownership

22.1.1. user owner and group owner

The users and groups of a system can be locally managed in /etc/passwd and /etc/group,
or they can be in a NIS, LDAP, or Samba domain. These users and groups can own files.
Actually, every file has a user owner and a group owner, as can be seen in the following
example.

student@linux:~/owners$ ls -lh
total 636K
-rw-r--r--. 1 student snooker 1.1K Apr 8 18:47 data.odt
-rw-r--r--. 1 student student 626K Apr 8 18:46 file1
-rw-r--r--. 1 student tennis 185 Apr 8 18:46 file2
-rw-rw-r--. 1 root root 0 Apr 8 18:47 stuff.txt

User student owns three files: file1 has student as user owner and has the group stu-
dent as group owner, data.odt is group owned by the group snooker, file2 by the group
tennis.

The last file is called stuff.txt and is owned by the root user and the root group.

22.1.2. chgrp

You can change the group owner of a file using the chgrp command. You must have root
privileges to do this.

root@linux:/home/student/owners# ls -l file2
-rw-r--r--. 1 root tennis 185 Apr 8 18:46 file2
root@linux:/home/student/owners# chgrp snooker file2
root@linux:/home/student/owners# ls -l file2
-rw-r--r--. 1 root snooker 185 Apr 8 18:46 file2
root@linux:/home/student/owners#

179

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/bertvv/

22. standard file permissions

22.1.3. chown

The user owner of a file can be changed with chown command. You must have root privi-
leges to do this. In the following example, the user owner of file2 is changed from root to
student.

root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 root student 0 2008-08-06 14:11 FileForStudent
root@linux:/home/student# chown student FileForStudent
root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 student student 0 2008-08-06 14:11 FileForStudent

You can also use chown user:group to change both the user owner and the group owner.

root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 student student 0 2008-08-06 14:11 FileForStudent
root@linux:/home/student# chown root:project42 FileForStudent
root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 root project42 0 2008-08-06 14:11 FileForStudent

22.2. list of special files

When you use ls -l, for each file you can see ten characters before the user and group
owner. The first character tells us the type of file. Regular files get a -, directories get a d,
symbolic links are shown with an l, pipes get a p, character devices a c, block devices a b,
and sockets an s.

first character file type

- normal file
d directory
l symbolic link
p named pipe
b block device
c character device
s socket

Below an example of a character device (the console) and a block device (the hard disk).

student@linux:~$ ls -l /dev/console /dev/sda
crw--w---- 1 root tty 5, 1 Mar 8 08:32 /dev/console
brw-rw---- 1 root disk 8, 0 Mar 8 08:32 /dev/sda

And here you can see a directory, a regular file and a symbolic link.

student@linux:~$ ls -ld /etc /etc/hosts /etc/os-release
drwxr-xr-x 81 root root 4096 Mar 8 08:32 /etc
-rw-r--r-- 1 root root 186 Feb 26 14:58 /etc/hosts
lrwxrwxrwx 1 root root 21 Dec 9 21:08 /etc/os-release -> ^./usr/lib/os-
release

180

22.3. permissions

22.3. permissions

22.3.1. rwx

The nine characters following the file type denote the permissions in three triplets. A permis-
sion can be r for read access, w forwrite access, and x for execute. You need the r permission
to list (ls) the contents of a directory. You need the x permission to enter (cd) a directory. You
need the w permission to create files in or remove files from a directory.

permission on a file on a directory

read read file contents (cat) read directory contents (ls)
write change file contents create/delete files (touch,rm)

execute execute the file enter the directory (cd)

22.3.2. three sets of rwx

We already know that the output of ls -l starts with ten characters for each file. This exam-
ple shows a regular file (because the first character is a -).

student@linux:~/test$ ls -l proc42.sh
-rwxr-xr-- 1 student proj 984 Feb 6 12:01 proc42.sh

Below is a table describing the function of all ten characters.

position characters function

1 - file type
2-4 rwx permissions for the user owner
5-7 r-x permissions for the group owner
8-10 r-- permissions for others

When you are the user owner of a file, then the user owner permissions apply to you. The
rest of the permissions have no influence on your access to the file.

When you belong to the group that is the group owner of a file, then the group owner per-
missions apply to you. The rest of the permissions have no influence on your access to the
file.

When you are not the user owner of a file and you do not belong to the group owner, then
the others permissions apply to you. The rest of the permissions have no influence on your
access to the file.

22.3.3. permission examples

Some example combinations on files and directories are seen in this example. The name of
the file explains the permissions.

student@linux:~/perms$ ls -lh
total 12K
drwxr-xr-x 2 student student 4.0K 2007-02-07 22:26 AllEnter_UserCreateDelete
-rwxrwxrwx 1 student student 0 2007-02-07 22:21 EveryoneFullControl.txt
-r--r----- 1 student student 0 2007-02-07 22:21 OnlyOwnersRead.txt
-rwxrwx--- 1 student student 0 2007-02-07 22:21 OwnersAll_RestNothing.txt
dr-xr-x--- 2 student student 4.0K 2007-02-07 22:25 UserAndGroupEnter
dr-x------ 2 student student 4.0K 2007-02-07 22:25 OnlyUserEnter

181

22. standard file permissions

To summarise, the first rwx triplet represents the permissions for theuser owner. The second
triplet corresponds to thegroupowner; it specifiespermissions for allmembers of that group.
The third triplet defines permissions for all other users that are not the user owner and are
not amember of thegroupowner. The rootuser ignores all restrictions and cando anything
with any file.

22.3.4. setting permissions with symbolic notation

Permissions can be changed with chmod MODE FILE^^.. You need to be the owner of the
file to do this. The first example gives (+) the user owner (u) execute (x) permissions.

student@linux:~/perms$ ls -l permissions.txt
-rw-r--r-- 1 student student 0 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod u+x permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxr--r-- 1 student student 0 2007-02-07 22:34 permissions.txt

This example removes (-) the group owner’s (g) read (r) permission.

student@linux:~/perms$ chmod g-r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx---r-- 1 student student 0 2007-02-07 22:34 permissions.txt

This example removes (-) the other’s (o) read (r) permission.

student@linux:~/perms$ chmod o-r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx------ 1 student student 0 2007-02-07 22:34 permissions.txt

This example gives (+) all (a) of them the write (w) permission.

student@linux:~/perms$ chmod a+w permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx-w--w- 1 student student 0 2007-02-07 22:34 permissions.txt

You don’t even have to type the a.

student@linux:~/perms$ chmod +x permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx-wx-wx 1 student student 0 2007-02-07 22:34 permissions.txt

You can also set explicit permissions with =.

student@linux:~/perms$ chmod u=rw permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rw--wx-wx 1 student student 0 2007-02-07 22:34 permissions.txt

Feel free to make any kind of combination, separating them with a comma. Remark that
spaces are not allowed!

student@linux:~/perms$ chmod u=rw,g=rw,o=r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rw-rw-r-- 1 student student 0 2007-02-07 22:34 permissions.txt

182

22.3. permissions

Even fishy combinations are accepted by chmod.

student@linux:~/perms$ chmod u=rwx,ug+rw,o=r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxrw-r-- 1 student student 0 2007-02-07 22:34 permissions.txt

Summarized, in order to change permissions with chmod using symbolic notation:

• first specify who the permissions are for: u for the user owner, g for the group owner, o
for others, and a for all. a is the default and can be omitted.

• then specify the operation: + to add permissions, - to remove permissions, and = to set
permissions.

• finally specify the permission(s): r for read, w for write, and x for execute.
• multiple operations can be combined with a comma (no spaces!)

22.3.5. setting permissions with octal notation

Most Unix administrators will use the “old school” octal system to talk about and set permis-
sions. Consider the triplet to be a binary number with 0 indicating the permission is not set
and 1 indicating the permission is set. You then have 23 = 8 possible combinations, hence
the name octal. You can then convert the binary number to an octal number, equating r to
4, w to 2, and x to 1.

permission binary octal

--- 000 0
--x 001 1
-w- 010 2
-wx 011 3
r-- 100 4
r-x 101 5
rw- 110 6
rwx 111 7

Since we have three triplets, we can use three octal digits to represent the permissions. This
makes 777 equal to rwxrwxrwx and by the same logic, 654 mean rw-r-xr^-. The chmod
command will accept these numbers.

student@linux:~/perms$ chmod 777 permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxrwxrwx 1 student student 0 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod 664 permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rw-rw-r-- 1 student student 0 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod 750 permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxr-x--- 1 student student 0 2007-02-07 22:34 permissions.txt

Remark that in practice, some combinations will never occur:

• The permissions of a userwill never be smaller than the permissions of the group owner
or others. Consequently, the digits will always be in descending order.

• Setting the write or execute permission without read access is useless. Consequently,
you will never use 1, 2, or 3 in an octal permission code

183

22. standard file permissions

• A directory will always have the read and execute permission set or unset together. It
is useless to allow a user to read the directory contents, but not let them cd into that
directory. Allowing cd without read access is also useless. The permission code for a
directory will therefore always be odd.

Here’s a little tip: you can print the permissions of a file in either octal or symbolic notation
with the stat command (check the man page of stat to see how this works).

[student@linux ~]$ stat -c '%A %a' /etc/passwd
-rw-r--r-- 644
[student@linux ~]$ stat -c '%A %a' /etc/shadow
---------- 0
[student@linux ~]$ stat -c '%A %a' /bin/ls
-rwxr-xr-x 755

22.3.6. umask

When creating a file or directory, a set of default permissions are applied. These default
permissions are determined by the umask value. The umask specifies permissions that you
do not want set on by default. You can display the umaskwith the umask command.

[student@linux ~]$ umask
0002
[student@linux ~]$ touch test
[student@linux ~]$ ls -l test
-rw-rw-r-- 1 student student 0 Jul 24 06:03 test
[student@linux ~]$

As you can also see, the file is also not executable by default. This is a general security feature
among Unixes; newly created files are never executable by default. You have to explicitly do
a chmod +x to make a file executable. This also means that the 1 bit in the umask has no
meaning. A umask value of 0022 has the same effect as 0033.

In practice, you will only use umask values:

• 0: don’t take away any permissions
• 2: take away write permissions
• 7: take away all permissions

You can set the umask value to a new value with the umask command. The umask value is
a four-digit octal number. The first digit is for special permissions (and is always zero), the
second for the user permissions (is in practice always 0, since there is no use in taking away
the user’s permissions), the third for the group owner (sometimes 0, but usually 2 or 7), and
the last for others (usually 2 or 7, 0 is very uncommon and can be considered to be a security
risk).

The umask value is subtracted from 777 to get the default permissions and in the case of a
file, the execute bit is removed.

[student@linux ~]$ umask 0002
[student@linux ~]$ touch file0002
[student@linux ~]$ mkdir dir0002
[student@linux ~]$ ls -ld *0002
drwxrwxr-x. 2 student student 6 Mar 8 10:48 dir0002
-rw-rw-r--. 1 student student 0 Mar 8 10:47 file0002
[student@linux ~]$ umask 0027
[student@linux ~]$ touch file0027
[student@linux ~]$ mkdir dir0027

184

22.4. practice: standard file permissions

[student@linux ~]$ ls -ld *0027
drwxr-x---. 2 student student 6 Mar 8 10:48 dir0027
-rw-r-----. 1 student student 0 Mar 8 10:48 file0027
[student@linux ~]$ umask 0077
[student@linux ~]$ touch file0077
[student@linux ~]$ mkdir dir0077
[student@linux ~]$ ls -ld *0077
drwx------. 2 student student 6 Mar 8 10:51 dir0077
-rw-------. 1 student student 0 Mar 8 10:51 file0077

22.3.7. mkdir -m

Whencreatingdirectorieswith mkdir you canuse the -moption to set the mode. This example
explains.

student@linux~$ mkdir -m 700 MyDir
student@linux~$ mkdir -m 777 Public
student@linux~$ ls -dl MyDir/ Public/
drwx------ 2 student student 4096 2011-10-16 19:16 MyDir/
drwxrwxrwx 2 student student 4096 2011-10-16 19:16 Public/

22.3.8. cp -p

To preserve permissions and time stamps from source files, use cp -p.

student@linux:~/perms$ cp file* cp
student@linux:~/perms$ cp -p file* cpp
student@linux:~/perms$ ll *
-rwx------ 1 student student 0 2008-08-25 13:26 file33
-rwxr-x--- 1 student student 0 2008-08-25 13:26 file42

cp:
total 0
-rwx------ 1 student student 0 2008-08-25 13:34 file33
-rwxr-x--- 1 student student 0 2008-08-25 13:34 file42

cpp:
total 0
-rwx------ 1 student student 0 2008-08-25 13:26 file33
-rwxr-x--- 1 student student 0 2008-08-25 13:26 file42

22.4. practice: standard file permissions

1. As normal user, create a directory ~/permissions. Create a file owned by yourself in
there.

2. Copy a file owned by root from /etc/ to your permissions dir, who owns this file now ?

3. As root, create a file in the users ~/permissions directory.
4. As normal user, look at who owns this file created by root.

5. Change the ownership of all files in ~/permissions to yourself.

6. Delete the file created by root. Is this possible?

185

22. standard file permissions

7. With chmod, is 770 the same as rwxrwx^^-?
8. With chmod, is 664 the same as r-xr-xr^-?
9. With chmod, is 400 the same as r--------?
10. With chmod, is 734 the same as rwxr-xr^-?
11. Display the umask value in octal and in symbolic form.

12. Set the umask to 0077, but use the symbolic format to set it. Verify that this works.

13. Create a file as root, give only read to others. Can a normal user read this file? Test
writing to this file with vi or nano.

14. Create a file as a normal user, take away all permissions for the group owner and others.
Can you still read the file? Can root read the file? Can root write to the file?

15. Create a directory that belongs to group users, where everymember of that group can
read andwrite to files, and create files. Make sure that people can only delete their own
files.

22.5. solution: standard file permissions

1. As normal user, create a directory ~/permissions. Create a file owned by yourself in
there.

[student@linux ~]$ mkdir permissions
[student@linux ~]$ touch permissions/myfile.txt
[student@linux ~]$ ls -l permissions/
total 0
-rw-r--r--. 1 student student 0 Mar 8 10:59 myfile.txt

2. Copy a file owned by root from /etc/ to your permissions dir, who owns this file now ?

[student@linux ~]$ ls -l /etc/hosts
-rw-r--r--. 1 root root 174 Feb 26 15:05 /etc/hosts
[student@linux ~]$ cp /etc/hosts ~/permissions/
[student@linux ~]$ ls -l permissions/hosts
-rw-r--r--. 1 student student 174 Mar 8 11:00 permissions/hosts

The copy is owned by you.

3. As root, create a file in the users ~/permissions directory.

[student@linux ~]$ sudo touch permissions/rootfile.txt
[sudo] password for student:

4. As normal user, look at who owns this file created by root.

[student@linux ~]$ ls -l permissions^*.txt
-rw-r--r--. 1 student student 0 Mar 8 10:59 permissions/myfile.txt
-rw-r--r--. 1 root root 0 Mar 8 11:02 permissions/rootfile.txt

The file created by root is owned by root.

5. Change the ownership of all files in ~/permissions to yourself.

[student@linux ~]$ chown student ~/permissions^*
chown: changing ownership of '/home/student/permissions/rootfile.txt': Operation not permitted

You cannot become owner of the file that belongs to root. Root must change the own-
ership.

6. Delete the file created by root. Is this possible?

186

22.5. solution: standard file permissions

[student@linux ~]$ rm ~/permissions/rootfile.txt
rm: remove write-protected regular empty file '/home/student/permissions/rootfile.txt'? y
[student@linux ~]$ ls -l permissions^*.txt
-rw-r--r--. 1 student student 0 Mar 8 10:59 permissions/myfile.txt

You can delete the file since you have write permission on the directory!

7. With chmod, is 770 the same as rwxrwx^^-?

yes

8. With chmod, is 664 the same as r-xr-xr^-?

no, rw-rw-r^- is 664 and r-xr-xr^- is 774

9. With chmod, is 400 the same as r--------?

yes

10. With chmod, is 734 the same as rwxr-xr^-?

no, rwxr-xr^- is 754 and rwx-wxr^- is 734

11. Display the umask in octal and in symbolic form.

umask and umask -S

12. Set the umask to 0077, but use the symbolic format to set it. Verify that this works.

[student@linux ~]$ umask -S u=rwx,go=
u=rwx,g=,o=
[student@linux ~]$ umask
0077

13. Create a file as root, give only read to others. Can a normal user read this file? Test
writing to this file with vi or nano.

[student@linux ~]$ sudo vi permissions/rootfile.txt
[student@linux ~]$ sudo chmod 644 permissions/rootfile.txt
[student@linux ~]$ ls -l permissions^*.txt
-rw-r--r--. 1 student student 0 Mar 8 10:59 permissions/myfile.txt
-rw-r--r--. 1 root root 6 Mar 8 13:53 permissions/rootfile.txt
[student@linux ~]$ cat permissions/rootfile.txt
hello
[student@linux ~]$ echo " world" >> permissions/rootfile.txt
-bash: permissions/rootfile.txt: Permission denied

Yes, a normal user can read the file, but not write to it.

14. Create a file as a normal user, take away all permissions for the group and others. Can
you still read the file? Can root read the file? Can root write to the file?

[student@linux ~]$ vi permissions/privatefile.txt
^^. (editing the file) ^^.
[student@linux ~]$ cat permissions/privatefile.txt
hello
[student@linux ~]$ chmod 600 permissions/privatefile.txt
[student@linux ~]$ ls -l permissions/privatefile.txt
-rw-------. 1 student student 0 Mar 8 16:06 permissions/privatefile.txt
[student@linux ~]$ cat permissions/privatefile.txt
hello

Of course, the owner can still read (and write to) the file.

187

22. standard file permissions

[student@linux ~]$ sudo vi permissions/privatefile.txt
[sudo] password for student:
^^. (editing the file) ^^.
[student@linux ~]$ cat permissions/privatefile.txt
hello world

Root can read and write to the file. In fact, root ignores all file permissions and can do
anything with any file.

15. Create a directory shared/ that belongs to group users, where every member of that
group can read and write to files, and create files.

[student@linux ~]$ mkdir shared
[student@linux ~]$ sudo chgrp users shared
[student@linux ~]$ chmod 775 shared/
[student@linux ~]$ ls -ld shared/
drwxrwxr-x. 2 student users 6 Mar 8 18:26 shared/

188

A. GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

A.1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, whichmeans that derivative works of the documentmust
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software man-
uals; it can be used for any textual work, regardless of subject matter or whether it is pub-
lished as a printed book. We recommend this License principally for works whose purpose
is instruction or reference.

A.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any suchmanual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall di-
rectlywithin that overall subject. (Thus, if theDocument is in part a textbook ofmathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sectionswhose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this

189

A. GNU Free Documentation License

License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Textmaybe atmost 5words, and aBack-Cover Textmaybe atmost 25words.

A “Transparent” copy of theDocumentmeans amachine-readable copy, represented in a for-
matwhose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardlywith generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for in-
put to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequentmodification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats in-
clude proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of
the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as “Acknowl-
edgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a
section when you modify the Document means that it remains a section “Entitled XYZ” ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to theDocument. TheseWarrantyDisclaimers are considered to be included
by reference in this License, but only as regardsdisclaimingwarranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

A.3. VERBATIM COPYING

Youmay copy and distribute theDocument in anymedium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to theDocument are reproduced in all copies, and that you addno other con-
ditions whatsoever to those of this License. Youmay not use technical measures to obstruct
or control the reading or further copying of the copies youmake or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

190

A.4. COPYING IN QUANTITY

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

A.4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the cov-
ers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (di-
rectly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

A.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribu-
tion andmodification of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). Youmay use the same title as a previous version
if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

191

A. GNU Free Documentation License

• F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, newauthors, andpublisher of theModifiedVersion asgivenon the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

• K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the con-
tributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

• M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

• N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If theModified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain nomaterial copied from theDocument, youmay at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in theModified Version’s license notice. These titlesmust be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangementsmade by) any one entity. If theDocument already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of theDocument do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

A.6. COMBINING DOCUMENTS

Youmay combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

192

A.7. COLLECTIONS OF DOCUMENTS

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, youmust combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

A.7. COLLECTIONS OF DOCUMENTS

Youmaymakeacollection consistingof theDocument andotherdocuments releasedunder
this License, and replace the individual copies of this License in the various documentswith a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually un-
der this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

A.8. AGGREGATIONWITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, is called an “aggre-
gate” if the copyright resulting from the compilation is not used to limit the legal rights of
the compilation’s users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of theDocument, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

A.9. TRANSLATION

Translation is consideredakindofmodification, so youmaydistribute translations of theDoc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

193

A. GNU Free Documentation License

A.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it
is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonablemeans, this is the first time
you have received notice of violation of this License (for anywork) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been termi-
nated and not permanently reinstated, receipt of a copy of some or all of the samematerial
does not give you any rights to use it.

A.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Docu-
mentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http:
//www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document spec-
ifies that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
theDocumentdoesnot specify a versionnumber of this License, youmay choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for
the Document.

A.12. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightableworks and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of busi-
ness in San Francisco, California, as well as future copyleft versions of that license published
by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of an-
other Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently

194

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

A.12. RELICENSING

incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of anMMCSitemay republish anMMCcontained in the site under CC-BY-SA on
the same site at any timebeforeAugust 1, 2009, provided theMMC is eligible for relicensing.

195

	Conventions used
	Reporting errors
	introduction to Linux
	Linux history
	1969
	1980s
	1990s
	2015

	distributions
	Linux and GNU
	Package management
	The Red Hat family of distributions
	The Debian family of distributions
	Notable ``independent'' distributions
	Which to choose?

	licensing
	about software licenses
	public domain software and freeware
	Free Software or Open Source Software
	GNU General Public License
	using GPLv3 software
	BSD license
	other licenses
	combination of software licenses

	command structure
	commands and arguments
	arguments
	white space removal
	single quotes
	double quotes
	echo and quotes
	commands
	external or builtin commands ?
	type
	running external commands
	which

	aliases
	create an alias
	abbreviate commands
	default options
	viewing aliases
	unalias

	displaying shell expansion
	practice: commands and arguments
	solution: commands and arguments

	shell history
	repeating the last command
	repeating other commands
	history
	!n
	Ctrl-r
	$HISTSIZE
	$HISTFILE
	$HISTFILESIZE
	prevent recording a command
	(optional)regular expressions
	(optional) Korn shell history
	practice: shell history
	solution: shell history

	variables
	shell variables
	$ dollar sign
	case sensitive
	creating variables
	quotes
	set
	unset
	$PS1
	$PATH
	env
	export
	delineate variables
	unbound variables
	practice: shell variables
	solution: shell variables

	the semicolon
	control operators
	; semicolon
	& ampersand
	$? dollar question mark
	&& double ampersand
	|| double vertical bar
	combining && and ||
	# pound sign
	\ escaping special characters
	end of line backslash

	practice: control operators
	solution: control operators

	getting help
	man pages
	man $command
	man $configfile
	man $daemon
	man -k (apropos)
	whatis
	whereis
	man sections
	man $section $file
	man man
	mandb

	the file system
	the Linux file tree
	filesystem hierarchy standard
	man hier
	the root directory /
	binary directories
	/bin
	other /bin directories
	/sbin
	/lib
	/opt

	configuration directories
	/boot
	/etc

	data directories
	/home
	/root
	/srv
	/media
	/mnt
	/tmp

	in memory directories
	/dev
	/proc conversation with the kernel
	/sys Linux 2.6 hot plugging

	/usr Unix System Resources
	/usr/bin
	/usr/include
	/usr/lib
	/usr/local
	/usr/share
	/usr/src

	/var variable data
	/var/log
	/var/log/messages
	/var/cache
	/var/spool
	/var/lib
	/var/...

	practice: file system tree
	solution: file system tree

	directory contents
	working with directories
	pwd
	cd
	cd ~
	cd ..
	cd -

	absolute and relative paths
	path completion
	ls
	ls -a
	ls -l
	ls -lh

	mkdir
	mkdir -p

	rmdir
	rmdir -p

	practice: working with directories
	solution: working with directories

	globbing
	file globbing
	* asterisk
	? question mark
	[] square brackets
	a-z and 0-9 ranges
	$LANG and square brackets
	preventing file globbing
	practice: shell globbing
	solution: shell globbing

	file and directory management
	working with files
	all files are case sensitive
	everything is a file
	file
	touch
	create an empty file
	touch -t

	rm
	remove forever
	rm -i
	rm -rf

	cp
	copy one file
	copy to another directory
	cp -r
	copy multiple files to directory
	cp -i

	mv
	rename files with mv
	rename directories with mv
	mv -i

	rename
	about rename
	rename on Debian/Ubuntu
	rename on CentOS/RHEL/Fedora

	practice: working with files
	solution: working with files

	basic Unix tools
	find
	locate
	date
	cal
	sleep
	time
	gzip - gunzip
	zcat - zmore
	bzip2 - bunzip2
	bzcat - bzmore
	practice: basic Unix tools
	solution: basic Unix tools

	links
	file links
	inodes
	inode contents
	inode table
	inode number
	inode and file contents

	about directories
	a directory is a table
	. and ..

	hard links
	creating hard links
	finding hard links

	symbolic links
	removing links
	practice : links
	solution : links

	working with text
	working with file contents
	head
	tail
	cat
	concatenate
	create files
	custom end marker
	copy files

	tac
	more and less
	strings
	practice: file contents
	solution: file contents

	I/O redirection
	stdin, stdout, and stderr
	output redirection
	> stdout
	output file is erased
	noclobber
	overruling noclobber
	>> append

	error redirection
	2> stderr
	2>&1

	output redirection and pipes
	joining stdout and stderr
	input redirection
	< stdin
	<< here document
	<<< here string

	confusing redirection
	quick file clear
	practice: input/output redirection
	solution: input/output redirection

	regular expressions
	regex versions
	grep
	print lines matching a pattern
	concatenating characters
	one or the other
	one or more
	match the end of a string
	match the start of a string
	separating words
	grep features
	preventing shell expansion of a regex

	rename
	the rename command
	perl
	well known syntax
	a global replace
	case insensitive replace
	renaming extensions

	sed
	stream editor
	interactive editor
	simple back referencing
	back referencing
	a dot for any character
	multiple back referencing
	white space
	optional occurrence
	exactly n times
	between n and m times

	bash history

	user group management
	groups
	groupadd
	group file
	groups
	usermod
	groupmod
	groupdel
	gpasswd
	newgrp
	vigr
	practice: groups
	solution: groups

	user management
	introduction to users
	whoami
	who
	who am i
	w
	id
	su to another user
	su to root
	su as root
	su - $username
	su -
	run a program as another user
	visudo
	sudo su -
	sudo logging
	practice: introduction to users
	solution: introduction to users

	user management
	user management
	/etc/passwd
	root
	useradd
	/etc/default/useradd
	userdel
	usermod
	creating home directories
	/etc/skel/
	deleting home directories
	login shell
	chsh
	practice: user management
	solution: user management

	user passwords
	passwd
	shadow file
	encryption with passwd
	encryption with openssl
	encryption with crypt
	/etc/login.defs
	chage
	disabling a password
	editing local files
	practice: user passwords
	solution: user passwords

	file permissions
	standard file permissions
	file ownership
	user owner and group owner
	chgrp
	chown

	list of special files
	permissions
	rwx
	three sets of rwx
	permission examples
	setting permissions with symbolic notation
	setting permissions with octal notation
	umask
	mkdir -m
	cp -p

	practice: standard file permissions
	solution: standard file permissions

	GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	RELICENSING

