
Linux for Data Scientists

Paul Cobbaut Andy Van Maele Thomas Parmentier
Bert Van Vreckem

September 18, 2024

Contents

I. First Linux VM 3

1. getting Linux at home 5
1.1. download a Linux CD image . 5
1.2. download Virtualbox . 6
1.3. create a virtual machine . 6
1.4. attach the CD image . 11
1.5. install Linux . 14

II. Software management; curl 15

2. package management 17
2.1. package terminology . 17

2.1.1. repository . 17
2.1.2. .deb packages . 17
2.1.3. .rpm packages . 17
2.1.4. dependency . 17
2.1.5. open source . 18
2.1.6. GUI software management . 18

2.2. deb package management . 18
2.2.1. about deb . 18
2.2.2. dpkg -l . 19
2.2.3. dpkg -l $package . 19
2.2.4. dpkg -S . 19
2.2.5. dpkg -L . 19
2.2.6. dpkg . 20
2.2.7. apt-get . 20
2.2.8. apt-get update . 20
2.2.9. apt-get upgrade . 21
2.2.10. apt-get clean . 22
2.2.11. apt-cache search . 22
2.2.12. apt-get install . 22
2.2.13. apt-get remove . 23
2.2.14. apt-get purge . 24
2.2.15. apt . 25
2.2.16. /etc/apt/sources.list . 26

2.3. the Red Hat package manager (rpm) . 26
2.3.1. dnf . 27
2.3.2. dnf list . 27
2.3.3. dnf search . 27
2.3.4. dnf info . 28
2.3.5. dnf install . 28
2.3.6. dnf upgrade . 30
2.3.7. dnf provides . 31
2.3.8. dnf remove . 31
2.3.9. dnf software groups . 32
2.3.10. rpm -qa . 33
2.3.11. rpm -q . 34
2.3.12. rpm -ql . 34

iii

Contents

2.3.13. rpm -Uvh . 34
2.3.14. rpm -e . 35
2.3.15. Package cache . 35
2.3.16. Configuration . 35
2.3.17. Working with multiple repositories . 36

2.4. pip, the Python package manager . 37
2.4.1. installing pip . 38
2.4.2. listing packages . 38
2.4.3. searching for packages . 38
2.4.4. installing packages . 39
2.4.5. removing packages . 39

2.5. container-based package managers . 39
2.5.1. flatpak . 39
2.5.2. snap . 40

2.6. downloading software outside the repository . 41
2.6.1. example: compiling zork . 41
2.6.2. installing from a tarball . 43

2.7. practice: package management . 43
2.8. solution: package management . 43

III. Scripting 101 45

3. I/O redirection 47
3.1. stdin, stdout, and stderr . 47
3.2. output redirection . 47

3.2.1. > stdout . 47
3.2.2. output file is erased . 48
3.2.3. noclobber . 48
3.2.4. overruling noclobber . 49
3.2.5. » append . 49

3.3. error redirection . 49
3.3.1. 2> stderr . 49
3.3.2. 2>&1 . 49

3.4. output redirection and pipes . 50
3.5. joining stdout and stderr . 50
3.6. input redirection . 51

3.6.1. < stdin . 51
3.6.2. « here document . 51
3.6.3. «< here string . 51

3.7. confusing redirection . 52
3.8. quick file clear . 52
3.9. practice: input/output redirection . 52
3.10. solution: input/output redirection . 53

4. filters 55
4.1. cat . 55
4.2. tee . 55
4.3. grep . 56
4.4. cut . 57
4.5. tr . 57
4.6. wc . 59
4.7. sort . 59
4.8. uniq . 60
4.9. comm . 60
4.10. od . 61
4.11. sed . 62
4.12. pipe examples . 62

4.12.1. who | wc . 62

iv

Contents

4.12.2. who | cut | sort . 63
4.12.3. grep | cut . 63

4.13. practice: filters . 63
4.14. solution: filters . 64

5. shell variables 67
5.1. $ dollar sign . 67
5.2. case sensitive . 67
5.3. creating variables . 67
5.4. quotes . 68
5.5. set . 68
5.6. unset . 68
5.7. $PS1 . 68
5.8. $PATH . 69
5.9. env . 70
5.10. export . 70
5.11. delineate variables . 71
5.12. unbound variables . 71
5.13. practice: shell variables . 71
5.14. solution: shell variables . 72

6. introduction to scripting 75
6.1. introduction . 75
6.2. hello world . 76
6.3. she-bang . 76
6.4. comments . 77
6.5. extension . 77
6.6. shell variables . 78
6.7. variable assignment . 78
6.8. unbound variables . 79
6.9. sourcing a script . 79
6.10. quoting . 80
6.11. troubleshooting a script . 81
6.12. Bash’s “strict mode” . 81
6.13. prevent setuid root spoofing . 82
6.14. practice: introduction to scripting . 82
6.15. solution: introduction to scripting . 83

IV. Organising users 85

7. standard file permissions 87
7.1. file ownership . 87

7.1.1. user owner and group owner . 87
7.1.2. chgrp . 87
7.1.3. chown . 88

7.2. list of special files . 88
7.3. permissions . 89

7.3.1. rwx . 89
7.3.2. three sets of rwx . 89
7.3.3. permission examples . 89
7.3.4. setting permissions with symbolic notation 90
7.3.5. setting permissions with octal notation . 91
7.3.6. umask . 92
7.3.7. mkdir -m . 93
7.3.8. cp -p . 93

7.4. practice: standard file permissions . 93
7.5. solution: standard file permissions . 94

v

Contents

8. advanced file permissions 97
8.1. sticky bit on directory . 97
8.2. setgid bit on directory . 97
8.3. setgid and setuid on regular files . 98
8.4. setuid on sudo . 99
8.5. practice: sticky, setuid and setgid bits . 99
8.6. solution: sticky, setuid and setgid bits . 99

9. introduction to users 101
9.1. whoami . 101
9.2. who . 101
9.3. who am i . 101
9.4. w . 102
9.5. id . 102
9.6. su to another user . 102
9.7. su to root . 102
9.8. su as root . 102
9.9. su - $username . 103
9.10. su - . 103
9.11. run a program as another user . 103
9.12. visudo . 103
9.13. sudo su - . 104
9.14. sudo logging . 104
9.15. practice: introduction to users . 104
9.16. solution: introduction to users . 105

10. user management 107
10.1. user management . 107
10.2. /etc/passwd . 107
10.3. root . 108
10.4. useradd . 108
10.5. /etc/default/useradd . 108
10.6. userdel . 108
10.7. usermod . 109
10.8. creating home directories . 109
10.9. /etc/skel/ . 109
10.10.deleting home directories . 109
10.11. login shell . 110
10.12.chsh . 110
10.13.practice: user management . 110
10.14.solution: user management . 111

11. user passwords 113
11.1. passwd . 113
11.2. shadow file . 113
11.3. encryption with passwd . 114
11.4. encryption with openssl . 114
11.5. encryption with crypt . 115
11.6. /etc/login.defs . 116
11.7. chage . 116
11.8. disabling a password . 117
11.9. editing local files . 117
11.10.practice: user passwords . 118
11.11. solution: user passwords . 118

12. User profiles 121
12.1. system profile . 121
12.2. ~/.bash_profile . 121
12.3. ~/.bash_login . 122

vi

Contents

12.4. ~/.profile . 122
12.5. ~/.bashrc . 122
12.6. ~/.bash_logout . 123
12.7. Debian overview . 123
12.8. RHEL5 overview . 124
12.9. practice: user profiles . 124
12.10.solution: user profiles . 124

13. groups 127
13.1. groupadd . 127
13.2. group file . 127
13.3. groups . 128
13.4. usermod . 128
13.5. groupmod . 128
13.6. groupdel . 128
13.7. gpasswd . 129
13.8. newgrp . 129
13.9. vigr . 130
13.10.practice: groups . 130
13.11. solution: groups . 130

V. Webserver; scripting 102 133

14. apache web server 135
14.1. introduction to apache . 135

14.1.1. installing on Debian . 135
14.1.2. installing on RHEL/CentOS . 136
14.1.3. running apache on Debian . 136
14.1.4. running apache on CentOS . 137
14.1.5. index file on CentOS . 138
14.1.6. default website . 139
14.1.7. apache configuration . 139

14.2. port virtual hosts on Debian . 140
14.2.1. default virtual host . 140
14.2.2. three extra virtual hosts . 140
14.2.3. three extra ports . 141
14.2.4. three extra websites . 141
14.2.5. enabling extra websites . 141
14.2.6. testing the three websites . 142

14.3. named virtual hosts on Debian . 143
14.3.1. named virtual hosts . 143
14.3.2. name resolution . 144
14.3.3. enabling virtual hosts . 144
14.3.4. reload and verify . 144

14.4. password protected website on Debian . 145
14.5. port virtual hosts on CentOS . 146

14.5.1. default virtual host . 146
14.5.2. three extra virtual hosts . 146
14.5.3. three extra ports . 146
14.5.4. SELinux guards our ports . 147
14.5.5. three extra websites . 147
14.5.6. enabling extra websites . 147
14.5.7. testing the three websites . 148
14.5.8. firewall rules . 149

14.6. named virtual hosts on CentOS . 149
14.6.1. named virtual hosts . 149
14.6.2. name resolution . 150
14.6.3. reload and verify . 150

vii

Contents

14.7. password protected website on CentOS . 150
14.8. troubleshooting apache . 152
14.9. virtual hosts example . 153
14.10.aliases and redirects . 153
14.11.more on .htaccess . 153
14.12.traffic . 153
14.13.self signed cert on Debian . 154
14.14.self signed cert on RHEL/CentOS . 156
14.15.practice: apache . 158

15. scripting loops 159
15.1. test [] . 159
15.2. if then else . 160
15.3. if then elif . 160
15.4. for loop . 161
15.5. while loop . 161
15.6. until loop . 162
15.7. practice: scripting tests and loops . 162
15.8. solution: scripting tests and loops . 162

16. scripting parameters 165
16.1. script parameters . 165
16.2. shift through parameters . 166
16.3. runtime input . 166
16.4. sourcing a config file . 167
16.5. get script options with getopts . 167
16.6. get shell options with shopt . 169
16.7. practice: parameters and options . 169
16.8. solution: parameters and options . 169

VI. Advanced text processing 171

17. file globbing 173
17.1. * asterisk . 173
17.2. ? question mark . 173
17.3. [] square brackets . 174
17.4. a-z and 0-9 ranges . 174
17.5. $LANG and square brackets . 175
17.6. preventing file globbing . 175
17.7. practice: shell globbing . 175
17.8. solution: shell globbing . 176

18. regular expressions 179
18.1. regex versions . 179
18.2. grep . 179

18.2.1. print lines matching a pattern . 179
18.2.2. concatenating characters . 180
18.2.3. one or the other . 180
18.2.4. one or more . 181
18.2.5. match the end of a string . 181
18.2.6. match the start of a string . 181
18.2.7. separating words . 182
18.2.8. grep features . 182
18.2.9. preventing shell expansion of a regex . 183

18.3. rename . 183
18.3.1. the rename command . 183
18.3.2. perl . 183
18.3.3. well known syntax . 184

viii

Contents

18.3.4. a global replace . 184
18.3.5. case insensitive replace . 185
18.3.6. renaming extensions . 185

18.4. sed . 185
18.4.1. stream editor . 185
18.4.2. interactive editor . 186
18.4.3. simple back referencing . 186
18.4.4. back referencing . 186
18.4.5. a dot for any character . 186
18.4.6. multiple back referencing . 186
18.4.7. white space . 187
18.4.8. optional occurrence . 187
18.4.9. exactly n times . 187
18.4.10.between n and m times . 188

18.5. bash history . 188

VII.Scripting 201; job scheduling 191

19. more scripting 193
19.1. eval . 193
19.2. (()) . 193
19.3. let . 194
19.4. case . 195
19.5. shell functions . 195
19.6. practice : more scripting . 196
19.7. solution : more scripting . 197

20.background jobs 199
20.1. background processes . 199

20.1.1. jobs . 199
20.1.2. control-Z . 199
20.1.3. & ampersand . 199
20.1.4. jobs -p . 200
20.1.5. fg . 200
20.1.6. bg . 200

20.2.practice : background processes . 201
20.3.solution : background processes . 201

21. scheduling 205
21.1. one time jobs with at . 205

21.1.1. at . 205
21.1.2. atq . 205
21.1.3. atrm . 206
21.1.4. at.allow and at.deny . 206

21.2. cron . 206
21.2.1. crontab file . 206
21.2.2. crontab command . 207
21.2.3. cron.allow and cron.deny . 207
21.2.4. /etc/crontab . 207
21.2.5. /etc/cron.* . 207
21.2.6. /etc/cron.* . 207

21.3. practice : scheduling . 208
21.4. solution : scheduling . 208

ix

Contents

VIII.SSH; Docker 211

22.ssh client and server 213
22.1. about ssh . 213

22.1.1. secure shell . 213
22.1.2. /etc/ssh/ . 213
22.1.3. ssh protocol versions . 213
22.1.4. public and private keys . 214
22.1.5. rsa and dsa algorithms . 214

22.2. log on to a remote server . 214
22.3. executing a command in remote . 215
22.4.scp . 215
22.5. setting up passwordless ssh . 215

22.5.1. ssh-keygen . 216
22.5.2. ~/.ssh . 216
22.5.3. id_rsa and id_rsa.pub . 216
22.5.4. copy the public key to the other computer 217
22.5.5. authorized_keys . 217
22.5.6. passwordless ssh . 217

22.6.X forwarding via ssh . 218
22.7. troubleshooting ssh . 218
22.8.sshd . 218
22.9. sshd keys . 219
22.10.ssh-agent . 219
22.11.practice: ssh . 219
22.12.solution: ssh . 220

A. git 223
A.1. git . 223
A.2. installing git . 224
A.3. starting a project . 224

A.3.1. git init . 225
A.3.2. git config . 225
A.3.3. git add . 225
A.3.4. git commit . 226
A.3.5. changing a committed file . 226
A.3.6. git log . 227
A.3.7. git mv . 227

A.4. git branches . 227
A.5. to be continued... 229
A.6. github.com . 229
A.7. add your public key to github . 229
A.8. practice: git . 229
A.9. solution: git . 230

B. Introduction to vi 231
B.1. commandmode and insert mode . 231
B.2. start typing (a A i I o O) . 231
B.3. replace and delete a character (r x X) . 232
B.4. undo, redo and repeat (u .) . 232
B.5. cut, copy and paste a line (dd yy p P) . 232
B.6. cut, copy and paste lines (3dd 2yy) . 232
B.7. start and end of a line (0 or ^ and $) . 233
B.8. join two lines (J) and more . 233
B.9. words (w b) . 233
B.10.save (or not) and exit (:w :q :q!) . 234
B.11. Searching (/ ?) . 234
B.12. replace all (:1,$ s/foo/bar/g) . 234
B.13. reading files (:r :r !cmd) . 235

x

Contents

B.14.text buffers . 235
B.15.multiple files . 235
B.16. abbreviations . 235
B.17. key mappings . 236
B.18.setting options . 236
B.19. practice: vi(m) . 236
B.20.solution: vi(m) . 237

C. GNU Free Documentation License 239
C.1. PREAMBLE . 239
C.2. APPLICABILITY AND DEFINITIONS . 239
C.3. VERBATIM COPYING . 240
C.4. COPYING IN QUANTITY . 241
C.5. MODIFICATIONS . 241
C.6. COMBINING DOCUMENTS . 242
C.7. COLLECTIONS OF DOCUMENTS . 243
C.8. AGGREGATIONWITH INDEPENDENTWORKS . 243
C.9. TRANSLATION . 243
C.10. TERMINATION . 244
C.11. FUTURE REVISIONS OF THIS LICENSE . 244
C.12. RELICENSING . 244

xi

Contents

.

Feel free to contact the author(s):

• Paul Cobbaut (Netsec BVBA): paul.cobbaut@gmail.com, https://cobbaut.be/
• Bert Van Vreckem (HOGENT): http://github.com/bertvv

Copyright 2007-2024 Netsec BVBA, Paul Cobbaut

This copy was generated on September 18, 2024.

Permission is granted to copy, distribute and/or modify this document under the terms of
theGNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘GNU Free Documentation
License’. # Abstract {.unnumbered}

This book is used as the syllabus for the course “Linux for Data Scientists” for the Bachelor of
Applied Computer Science at the HOGENT, Belgium. The contents are based on the Linux
Training book series by Paul Cobbaut, with updates and additions written by the HOGENT
Linux team.

This book is aimed at students specialising in the Data Engineering track that already have
some basic knowledge of Linux. Where the sibling “Linux” course for students in Oper-
ations/System Administration focuses on Linux as a server operating system, this course
rather discusses how Linux can be used as a platform for task and workflow automation.

More information and free .pdf available at https://hogenttin.github.io/linux-training-
hogent/.

1

mailto:paul.cobbaut@gmail.com
https://cobbaut.be/
http://github.com/bertvv
https://linux-training.be
https://linux-training.be
https://hogenttin.github.io/linux-training-hogent/
https://hogenttin.github.io/linux-training-hogent/

Part I.

First Linux VM

3

1. getting Linux at home

(Written by Paul Cobbaut, https://github.com/paulcobbaut/)

This chapter shows a Ubuntu install in Virtualbox. Consider it legacy and use
CentOS7 or Debian8 instead (each have their own chapter now).

This book assumes you have access to a working Linux computer. Most companies have one
ormore Linux servers, if you have already logged on to it, then you ’re all set (skip this chapter
and go to the next).

Another option is to insert a Ubuntu Linux CD in a computer with (or without) Microsoft
Windows and follow the installation. Ubuntu will resize (or create) partitions and setup a
menu at boot time to choose Windows or Linux.

If you donot have access to a Linux computer at themoment, and if you are unable or unsure
about installing Linux on your computer, then this chapter proposes a third option: installing
Linux in a virtual machine.

Installation in a virtual machine (provided by Virtualbox) is easy and safe. Even when you
makemistakes and crash everything on the virtual Linuxmachine, then nothing on the real
computer is touched.

This chapter gives easy steps and screenshots to get a working Ubuntu server in a Virtualbox
virtual machine. The steps are very similar to installing Fedora or CentOS or even Debian,
and if you like you can also use VMWare instead of Virtualbox.

1.1. download a Linux CD image

Start by downloading a Linux CD image (an .ISO file) from the distribution of your choice
from the Internet. Take care selecting the correct cpu architecture of your computer; choose
i386 if unsure. Choosing the wrong cpu type (like x86_64 when you have an old Pentium)
will almost immediately fail to boot the CD.

5

https://github.com/paulcobbaut/

1. getting Linux at home

1.2. download Virtualbox

Step two (when the .ISO file has finished downloading) is to download Virtualbox. If you are
currently running Microsoft Windows, then download and install Virtualbox for Windows!

1.3. create a virtual machine

Now start Virtualbox. Contrary to the screenshot below, your left pane should be empty.

Click New to create a new virtual machine. We will walk together through the wizard. The
screenshots below are taken on Mac OSX; they will be slightly different if you are running
Microsoft Windows.

6

1.3. create a virtual machine

Name your virtual machine (and maybe select 32-bit or 64-bit).

Give the virtual machine some memory (512MB if you have 2GB or more, otherwise select
256MB).

7

1. getting Linux at home

Select to create a new disk (remember, this will be a virtual disk).

If you get the question below, choose vdi.

8

1.3. create a virtual machine

Choose dynamically allocated (fixed size is only useful in production or on really old, slow
hardware).

Choose between 10GB and 16GB as the disk size.

9

1. getting Linux at home

Click create to create the virtual disk.

Click create to create the virtual machine.

10

1.4. attach the CD image

1.4. attach the CD image

Before we start the virtual computer, let us take a look at some settings (click Settings).

Do not worry if your screen looks different, just find the button named storage.

11

1. getting Linux at home

Remember the .ISO file you downloaded? Connect this .ISO file to this virtual machine by
clicking on the CD icon next to Empty.

Now click on the other CD icon and attach your ISO file to this virtual CD drive.

12

1.4. attach the CD image

Verify that your download is accepted. If Virtualbox complains at this point, then you proba-
bly did not finish the download of the CD (try downloading it again).

It could be useful to set the network adapter to bridge instead of NAT. Bridged usually will
connect your virtual computer to the Internet.

13

1. getting Linux at home

1.5. install Linux

The virtual machine is now ready to start. When given a choice at boot, select install and
follow the instructions on the screen. When the installation is finished, you can log on to the
machine and start practising Linux!

14

Part II.

Software management; curl

15

2. package management

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/, Bert Van Vreckem
https://github.com/bertvv/)

Most Linux distributions have apackagemanagement systemwith online repositories con-
taining thousands of packages. This makes it very easy to install, update and remove appli-
cations, operating system components, documentation and much more.

We first discuss the Debian package format .deb and its tools dpkg, apt-get and apt. This
should be similar on Debian, Ubuntu, Mint and all derived distributions.

Then we take a look at the Red Hat package format .rpm and its tools rpm and dnf. This
should be similar on Red Hat, Fedora, AlmaLinux and all derived distributions.

2.1. package terminology

2.1.1. repository

A lot of software and documentation for your Linux distribution is available as packages in
one or more centrally distributed repositories. The packages in such a repository are tested
and very easy to install (or remove) with a graphical or command line installer.

2.1.2. .deb packages

Debian, Ubuntu, Mint and all derivatives of Debian and Ubuntu use .deb packages. To man-
age software on these systems, you can use apt or apt-get, both these tools are a front end
for dpkg.

2.1.3. .rpm packages

RedHat, Fedora, CentOS, OpenSUSE,Mandriva, Red Flag and others use .rpmpackages. The
tools to manage software packages on these systems are dnf and rpm.

2.1.4. dependency

Some packages need other packages to function. Tools like apt-get, apt and dnfwill install
all dependencies you need. When using dpkg or rpm, or when building from source, you
will need to install dependencies yourself.

17

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/bertvv/

2. package management

2.1.5. open source

These repositories contain a lot of independent open source software. Often the source
code is customized to integrate better with your distribution. Most distributions also offer
this modified source code as a package in one or more source repositories.

You are free to go to the project website itself (samba.org, apache.org, github.com …) and
download the vanilla (= without the custom distribution changes) source code.

2.1.6. GUI software management

End users have several graphical applications available via the desktop (look for add/remove
software or something similar).

Below a screenshot of Ubuntu Software Center running onUbuntu 12.04. Graphical tools are
not discussed in this book.

2.2. deb package management

2.2.1. about deb

Most people use apt or apt-get (APT = Advanced Package Tool) to manage their De-
bian/Ubuntu family of Linux distributions. Both are a front end for dpkg and are themselves
a back end for synaptic and other graphical tools.

18

2.2. deb package management

2.2.2. dpkg -l

The low level tool to workwith .deb packages is dpkg. Among other things, you can use dpkg
to list all installed packages on a Debian server.

student@debian:~$ dpkg -l | wc -l
365

Compare this to the same list on a Linux Mint system with a graphical desktop installed.

student@mint:~$ dpkg -l | wc -l
2118

2.2.3. dpkg -l $package

Here is an example on how to get information on an individual package. The ii at the begin-
ning means the package is installed.

root@debian:~# dpkg -l rsync | tail -1 | tr -s ' '
ii rsync 3.2.7-1 amd64 fast, versatile, remote (and local) file-copying tool

2.2.4. dpkg -S

You can find the package responsible for installing a certain file on your computer using
dpkg -S. This example shows how to find the package for three files on a typical Debian
server.

student@debian:~$ dpkg -S /usr/share/doc/tmux/ /etc/ssh/ssh_config /sbin/ifconfig
dpkg-query: no path found matching pattern /usr/share/doc/tmux/
openssh-client: /etc/ssh/ssh_config
net-tools: /sbin/ifconfig

2.2.5. dpkg -L

In reverse, you can also get a list of all files that have been installed by a certain program.
Below is the list for the curl package.

student@debian:~$ dpkg -L curl
/.
/usr
/usr/bin
/usr/bin/curl
/usr/share
/usr/share/doc
/usr/share/doc/curl
/usr/share/doc/curl/changelog.Debian.gz
/usr/share/doc/curl/changelog.gz
/usr/share/doc/curl/copyright
/usr/share/man
/usr/share/man/man1
/usr/share/man/man1/curl.1.gz
/usr/share/zsh
/usr/share/zsh/vendor-completions
/usr/share/zsh/vendor-completions/_curl

19

2. package management

2.2.6. dpkg

You could use dpkg -i to install a package and dpkg -r to remove a package, but you’d have
tomanually download the packge and keep track of dependencies. Using apt-get or apt is
much easier.

2.2.7. apt-get

Debian has been using apt-get to manage packages since 1998. Today Debian and many
Debian-based distributions still actively support apt-get, though some experts claim apt,
released in 2014, is better at handling dependencies than apt-get.
Both commands use the same configuration files and can be used alternately; whenever
you see apt-get in documentation, feel free to type apt.
We will start with apt-get and discuss apt in the next section.

2.2.8. apt-get update

When typing apt-get update you are downloading the names, versions and short descrip-
tion of all packages available on all configured repositories for your system. Remark that you
need to be root to run this command.

student@debian:~$ apt-get update
Reading package lists^^. Done
E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)
E: Unable to lock directory /var/lib/apt/lists/
student@debian:~$ sudo apt-get update
Hit:1 http:^/security.debian.org/debian-security bookworm-security InRelease
Hit:2 http:^/httpredir.debian.org/debian bookworm InRelease
Hit:3 http:^/httpredir.debian.org/debian bookworm-updates InRelease
Reading package lists^^. Done

In the example below you can see an interaction with an Ubuntu system. Some repositories
are at the url be.archive.ubuntu.com because this computer was installed in Belgium. This
mirror URL can be different for you.

student@ubuntu:~$ sudo apt-get update
Ign http:^/be.archive.ubuntu.com precise InRelease
Ign http:^/extras.ubuntu.com precise InRelease
Ign http:^/security.ubuntu.com precise-security InRelease
Ign http:^/archive.canonical.com precise InRelease
Ign http:^/be.archive.ubuntu.com precise-updates InRelease
^^.
Hit http:^/be.archive.ubuntu.com precise-backports/main Translation-en
Hit http:^/be.archive.ubuntu.com precise-backports/multiverse Translation-en
Hit http:^/be.archive.ubuntu.com precise-backports/restricted Translation-en
Hit http:^/be.archive.ubuntu.com precise-backports/universe Translation-en
Fetched 13.7 MB in 8s (1682 kB/s)
Reading package lists^^. Done
student@ubuntu:~$

Tips:

• Run apt-get update every timebefore performing other package operations to ensure
your metadata is up-to-date.

• Since the package repositories are hosted on web servers, you can open any repository
URL in your browser to see how the repository is structured.

20

2.2. deb package management

2.2.9. apt-get upgrade

One of the nicest features of apt-get is that it allows for a secure update of all software
currently installed on your computer with just one command.

student@debian:~$ sudo apt-get upgrade
Reading package lists^^. Done
Building dependency tree
Reading state information^^. Done
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

The above transcript shows that all software is updated to the latest version available for my
distribution. Below is an example of a systemwith software that can be updated. Some lines
were ommitted for brevity.

student@debian:~$ sudo apt-get upgrade
Reading package lists^^. Done
Building dependency tree^^. Done
Reading state information^^. Done
Calculating upgrade^^. Done
The following packages have been kept back:

linux-image-amd64
The following packages will be upgraded:

base-files bind9-dnsutils bind9-host bind9-libs cryptsetup cryptsetup-
bin libcryptsetup12 libgnutls30 libnss-systemd libpam-systemd libsystemd-
shared libsystemd0 libudev1 systemd systemd-sysv

systemd-timesyncd tar tzdata udev usr-is-merged
20 upgraded, 0 newly installed, 0 to remove and 1 not upgraded.
Need to get 13.0 MB of archives.
After this operation, 75.8 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http:^/security.debian.org/debian-security bookworm-security/main amd64 bind9-
host amd64 1:9.18.24-1 [305 kB]
[^^.]
Get:20 http:^/httpredir.debian.org/debian bookworm/main amd64 cryptsetup amd64 2:2.6.1-
4~deb12u2 [213 kB]
Fetched 13.0 MB in 1s (20.3 MB/s)
Reading changelogs^^. Done
Preconfiguring packages ^^.
(Reading database ^^. 29205 files and directories currently installed.)
Preparing to unpack ^^./base-files_12.4+deb12u5_amd64.deb ^^.
Unpacking base-files (12.4+deb12u5) over (12.4+deb12u4) ^^.
Setting up base-files (12.4+deb12u5) ^^.
Installing new version of config file /etc/debian_version ^^.
[^^.]
Preparing to unpack ^^./5-cryptsetup_2%3a2.6.1-4~deb12u2_amd64.deb ^^.
Unpacking cryptsetup (2:2.6.1-4~deb12u2) over (2:2.6.1-4~deb12u1) ^^.
Setting up systemd-sysv (252.22-1~deb12u1) ^^.
[^^.]
Setting up bind9-dnsutils (1:9.18.24-1) ^^.
Processing triggers for initramfs-tools (0.142) ^^.
update-initramfs: Generating /boot/initrd.img-6.1.0-17-amd64
[^^.]
Processing triggers for mailcap (3.70+nmu1) ^^.

Tip: Have you noticed that almost every time that you update software onWindows, you are
asked to reboot your computer? This is not the case with Linux! The only time you need to
reboot is when you update the kernel.

21

2. package management

2.2.10. apt-get clean

apt-get keeps a copy of downloaded packages in /var/cache/apt/archives, as can be
seen in this screenshot.

student@debian:~$ ls /var/cache/apt/archives/ | head
base-files_12.4+deb12u5_amd64.deb
bind9-dnsutils_1%3a9.18.24-1_amd64.deb
bind9-host_1%3a9.18.24-1_amd64.deb
bind9-libs_1%3a9.18.24-1_amd64.deb
cryptsetup_2%3a2.6.1-4~deb12u2_amd64.deb
cryptsetup-bin_2%3a2.6.1-4~deb12u2_amd64.deb
libcryptsetup12_2%3a2.6.1-4~deb12u2_amd64.deb
libgnutls30_3.7.9-2+deb12u2_amd64.deb
libnss-systemd_252.22-1~deb12u1_amd64.deb
libpam-systemd_252.22-1~deb12u1_amd64.deb

Running apt-get clean removes all .deb files from that directory.

student@debian:~$ sudo apt-get clean
student@debian:~$ ls /var/cache/apt/archives^*.deb
ls: cannot access /var/cache/apt/archives^*.deb: No such file or directory

2.2.11. apt-cache search

Use apt-cache search to search for availability of a package. Here we look for rsync.

student@debian:~$ apt-cache search rsync | grep '^rsync'
rsync - fast, versatile, remote (and local) file-copying tool
rsyncrypto - rsync friendly encryption

2.2.12. apt-get install

You can install one ormore applications by appending their name behind apt-get install.
The following example shows how to install the tftp-hpa package (a TFTP server).

student@debian:~$ sudo apt-get install tftpd-hpa
Reading package lists^^. Done
Building dependency tree^^. Done
Reading state information^^. Done
Suggested packages:

pxelinux
The following NEW packages will be installed:

tftpd-hpa
0 upgraded, 1 newly installed, 0 to remove and 1 not upgraded.
Need to get 41.9 kB of archives.
After this operation, 117 kB of additional disk space will be used.
Get:1 http:^/httpredir.debian.org/debian bookworm/main amd64 tftpd-hpa amd64 5.2+20150808-
1.4 [41.9 kB]
Fetched 41.9 kB in 0s (241 kB/s)
Preconfiguring packages ^^.
Selecting previously unselected package tftpd-hpa.
(Reading database ^^. 29179 files and directories currently installed.)
Preparing to unpack ^^./tftpd-hpa_5.2+20150808-1.4_amd64.deb ^^.

22

2.2. deb package management

Unpacking tftpd-hpa (5.2+20150808-1.4) ^^.
Setting up tftpd-hpa (5.2+20150808-1.4) ^^.
Processing triggers for man-db (2.11.2-2) ^^.

The apt-get command will ask the user to confirm the installation of the package by press-
ing “y” and ENTER. You can use the -y option to automatically answer yes to all questions.

The following example installs the vim package (VI iMproved, a powerful text editor for the
terminal). Remark that some additional packages are installed as dependencies!

student@debian:~$ sudo apt-get install -y vim
Reading package lists^^. Done
Building dependency tree^^. Done
Reading state information^^. Done
The following additional packages will be installed:

libgpm2 libsodium23 vim-runtime
Suggested packages:

gpm ctags vim-doc vim-scripts
The following NEW packages will be installed:

libgpm2 libsodium23 vim vim-runtime
0 upgraded, 4 newly installed, 0 to remove and 1 not upgraded.
Need to get 8,768 kB of archives.
After this operation, 41.5 MB of additional disk space will be used.
[^^.]
Setting up libsodium23:amd64 (1.0.18-1) ^^.
Setting up libgpm2:amd64 (1.20.7-10+b1) ^^.
Setting up vim-runtime (2:9.0.1378-2) ^^.
Setting up vim (2:9.0.1378-2) ^^.
[^^.]
Processing triggers for man-db (2.11.2-2) ^^.
Processing triggers for libc-bin (2.36-9+deb12u4) ^^.

2.2.13. apt-get remove

You can remove one or more applications by appending their name behind apt-get re-
move.

student@debian:~$ sudo apt-get remove tftpd-hpa
Reading package lists^^. Done
Building dependency tree^^. Done
Reading state information^^. Done
The following packages will be REMOVED:

tftpd-hpa
0 upgraded, 0 newly installed, 1 to remove and 1 not upgraded.
After this operation, 117 kB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database ^^. 29194 files and directories currently installed.)
Removing tftpd-hpa (5.2+20150808-1.4) ^^.
Processing triggers for man-db (2.11.2-2) ^^.

If we use dpkg -l to check the status of the tftpd-hpa package, we see that it is re-
moved, some configuration (rc) files are left on the system. Indeed, the configuration file
/etc/init/tftpd-hpa.conf is not removed! We’ll solve this in the next section.

23

2. package management

student@debian:~$ dpkg -l tftpd-hpa | tail -1
rc tftpd-hpa 5.2+20150808-1.4 amd64 HPA's tftp server
student@debian:~$ ls -l /etc/init/tftpd-hpa.conf
-rw-r--r-- 1 root root 980 Oct 25 2022 /etc/init/tftpd-hpa.conf

The example below shows how to remove the vim package. Note that dependencies are not
removed! You can execute sudo apt autoremove afterwards (as is suggested by the output
of the command!) to remove those as well.

student@debian:~$ sudo apt-get remove vim
Reading package lists^^. Done
Building dependency tree^^. Done
Reading state information^^. Done
The following packages were automatically installed and are no longer required:

libsodium23 vim-runtime
Use 'sudo apt autoremove' to remove them.
The following packages will be REMOVED:

vim
0 upgraded, 0 newly installed, 1 to remove and 1 not upgraded.
After this operation, 3,738 kB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database ^^. 31257 files and directories currently installed.)
Removing vim (2:9.0.1378-2) ^^.
[^^.]
student@debian:~$ sudo apt-get autoremove
Reading package lists^^. Done
Building dependency tree^^. Done
Reading state information^^. Done
The following packages will be REMOVED:

libsodium23 vim-runtime
0 upgraded, 0 newly installed, 2 to remove and 1 not upgraded.
After this operation, 37.7 MB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database ^^. 31247 files and directories currently installed.)
Removing libsodium23:amd64 (1.0.18-1) ^^.
Removing vim-runtime (2:9.0.1378-2) ^^.
Removing 'diversion of /usr/share/vim/vim90/doc/help.txt to /usr/share/vim/vim90/doc/help.txt.vim-
tiny by vim-runtime'
Removing 'diversion of /usr/share/vim/vim90/doc/tags to /usr/share/vim/vim90/doc/tags.vim-
tiny by vim-runtime'
Processing triggers for man-db (2.11.2-2) ^^.
Processing triggers for libc-bin (2.36-9+deb12u4) ^^.

2.2.14. apt-get purge

You can purge one or more applications by appending their name behind apt-get purge.
Purging will also remove all existing configuration files related to that application. The
screenshot shows how to purge the tftpd-hpa package.

student@debian:~$ ls -l /etc/init/tftpd-hpa.conf
-rw-r--r-- 1 root root 980 Oct 25 2022 /etc/init/tftpd-hpa.conf
student@debian:~$ sudo apt-get purge tftpd-hpa
Reading package lists^^. Done
Building dependency tree^^. Done
Reading state information^^. Done
The following packages will be REMOVED:

24

2.2. deb package management

tftpd-hpa*
0 upgraded, 0 newly installed, 1 to remove and 1 not upgraded.
After this operation, 0 B of additional disk space will be used.
Do you want to continue? [Y/n] y
(Reading database ^^. 29182 files and directories currently installed.)
Purging configuration files for tftpd-hpa (5.2+20150808-1.4) ^^.
student@debian:~$ ls -l /etc/init/tftpd-hpa.conf
ls: cannot access '/etc/init/tftpd-hpa.conf': No such file or directory

Note that dpkg has no information about a purged package!

student@debian:~$ dpkg -l tftpd-hpa | tail -1 | tr -s ' '
dpkg-query: no packages found matching tftpd-hpa

2.2.15. apt

Nowadays, most people use apt for package management on Debian, Mint and Ubuntu
systems. That does notmean that apt-get is no longer useful. In scripts, it is actually recom-
mended to use apt-get because its options and behaviour are more stable and predictable
than apt. For interactive use, apt is more user-friendly.

To synchronize with the repositories.

sudo apt update

To patch and upgrade all software to the latest version on Debian.

sudo apt upgrade

To patch and upgrade all software to the latest version on Ubuntu and Mint.

sudo apt safe-upgrade

To install an application with all dependencies.

sudo apt install $package

To search the repositories for applications that contain a certain string in their name or de-
scription.

apt search $string

To remove an application.

sudo apt remove $package

To remove an application and all configuration files.

sudo apt purge $package

25

2. package management

2.2.16. /etc/apt/sources.list

Both apt-get and apt use the same configuration information in /etc/apt/. The main
configurationfile is /etc/apt/sources.list and thedirectory /etc/apt/sources.list.d/
contains additional files. These contain a list of http or ftp sources where packages for the
distribution can be downloaded. Third party software vendors may provide their own pack-
age repositories for Debian or Ubuntu. These repositories are typically added through a new
file in /etc/apt/sources.list.d/.

This is what that list looks like on a Debian server system shortly after installation.

student@debian:~$ cat /etc/apt/sources.list
deb http:^/httpredir.debian.org/debian/ bookworm main non-free-firmware
deb-src http:^/httpredir.debian.org/debian/ bookworm main non-free-firmware

deb http:^/security.debian.org/debian-security bookworm-security main non-
free-firmware
deb-src http:^/security.debian.org/debian-security bookworm-security main non-
free-firmware

bookworm-updates, to get updates before a point release is made;
deb http:^/httpredir.debian.org/debian/ bookworm-updates main non-free-
firmware
deb-src http:^/httpredir.debian.org/debian/ bookworm-updates main non-free-
firmware

If youuse Linux as adaily driver, youmay endupwith a repository listwithmanymore entries,
like on this Ubuntu system:

student@ubuntu:~$ wc -l /etc/apt/sources.list
63 /etc/apt/sources.list

There is much more to learn about apt, explore commands like add-apt-repository, apt-
key and apropos apt.

2.3. the Red Hat package manager (rpm)

OnRedHat and other distros of that family, the RedHat packagemanager (RPM) is used to
install, upgrade and remove software. There’s a basic command, rpm, and a more advanced
tool, dnf (comparable with the situation on Debian-based systems, where dpkg is the basic
tool and apt the more advanced one). When you install a graphical desktop, there’s also a
GUI tool for package management, but we won’t be discussing that here.

Software distributed in the rpm format will have a file name following this format: package-
version-release.architecture.rpm. For example, the package name openssh-server-
8.7p1-34.el9.x86_64.rpm has the following components:

• package name: openssh-server
• version: 8.7p1
• release: 34.el9 (el9 stands for Enterprise Linux 9, indicating it is compatible with RHEL
9)

• architecture: x86_64 (suitable for a 64-bit Intel/AMD processor)

Wewill startwith discussing the dnf command, since that one ismost commonly used. After
that, we’ll show how to use the rpm command.

26

2.3. the Red Hat package manager (rpm)

2.3.1. dnf

The name of the dnf command has a bit of a convoluted history. It stands for “Dandified
Yum”, and is a fork/improvement of the yum package manager command. Yum stands for
Yellowdog Updater, Modified, and was originally developed for the now defunct Yellow Dog
Linux distribution (for the IBM POWER7 processor). Red Hat started using it in RHEL 5 and
it was the default packagemanager for Red Hat and its derivatives for many years. However,
more recently, they developed dnf to replace yum with the former now being the default
package manager for Fedora, Red Hat Enterprise Linux and its derivatives.

The dnf command works quite similarly to the apt command on Debian-based systems. It
has similar subcommands, which we will discuss in the next sections. However, an equiva-
lent for apt update does not exist. The dnf command will automatically update its package
database whenever you execute it.

2.3.2. dnf list

Issue dnf list to see a list of all packages that DNF knows about.

[student@el ~]$ dnf list | wc -l
6751
[student@el ~]$ dnf list --all | wc -l
6751

Add the option ^-available or ^-installed to see only the packages that are available for
installation or installed on the system.

[student@el ~]$ dnf list --available | wc -l
6392
[student@el ~]$ dnf list --installed | wc -l
353

Issue dnf list $package to get all versions (in different repositories) of one package.

[student@el ~]$ dnf list kernel
Last metadata expiration check: 0:12:15 ago on Sun 25 Feb 2024 07:16:59 PM UTC.
Installed Packages
kernel.x86_64 5.14.0-362.8.1.el9_3 @anaconda
kernel.x86_64 5.14.0-362.13.1.el9_3 @baseos
Available Packages
kernel.x86_64 5.14.0-362.18.1.el9_3 baseos

2.3.3. dnf search

To search for a package containing a certain string in the description or name use dnf
search $string.

[student@el ~]$ dnf search openssh
Last metadata expiration check: 0:15:35 ago on Sun 25 Feb 2024 07:16:59 PM UTC.
========================= Name Exactly Matched: openssh ========================
openssh.x86_64 : An open source implementation of SSH protocol version 2
======================== Name & Summary Matched: openssh =======================
openssh-askpass.x86_64 : A passphrase dialog for OpenSSH and X
openssh-keycat.x86_64 : A mls keycat backend for openssh
============================= Name Matched: openssh ============================

27

2. package management

openssh-clients.x86_64 : An open source SSH client applications
openssh-server.x86_64 : An open source SSH server daemon
[student@el ~]$ dnf search epel
Last metadata expiration check: 0:18:51 ago on Sun 25 Feb 2024 07:16:59 PM UTC.
============================== Name Matched: epel ==============================
epel-release.noarch : Extra Packages for Enterprise Linux repository configuration

2.3.4. dnf info

Information about a specific package can be obtained with dnf info $package.

[student@el ~]$ dnf info epel-release
Last metadata expiration check: 1:15:53 ago on Sun 25 Feb 2024 07:55:24 PM UTC.
Installed Packages
Name : epel-release
Version : 9
Release : 7.el9
Architecture : noarch
Size : 26 k
Source : epel-release-9-7.el9.src.rpm
Repository : @System
From repo : epel
Summary : Extra Packages for Enterprise Linux repository configuration
URL : http:^/download.fedoraproject.org/pub/epel
License : GPLv2
Description : This package contains the Extra Packages for Enterprise Linux

: (EPEL) repository GPG key as well as configuration for yum.

This gives you a lot of information about the package, including the version, release, architec-
ture, size, source, repository, summary, link to the project website, license and description.

If the repository is indicated as @System, it means that the package is installed. Otherwise, it
would show the name of the repository from which the package would be installed.

[student@el ~]$ dnf info zork
Last metadata expiration check: 1:19:14 ago on Sun 25 Feb 2024 07:55:24 PM UTC.
Available Packages
Name : zork
Version : 1.0.3
Release : 5.el9
Architecture : x86_64
Size : 179 k
Source : zork-1.0.3-5.el9.src.rpm
Repository : epel
Summary : Public Domain original DUNGEON game (Zork I)
URL : https:^/github.com/devshane/zork
License : Public Domain
Description : Public Domain source code to the original DUNGEON game (Zork I).
[^^.]

2.3.5. dnf install

To install an application, use dnf install $package. Naturally, dnf will install all the neces-
sary dependencies.

28

2.3. the Red Hat package manager (rpm)

[student@el ~]$ sudo dnf install epel-release
Last metadata expiration check: 2:07:04 ago on Sun 25 Feb 2024 05:32:50 PM UTC.
Dependencies resolved.
==
Package Architecture Version Repository Size
==
Installing:
epel-release noarch 9-5.el9 extras 18 k

Transaction Summary
==
Install 1 Package

Total download size: 18 k
Installed size: 25 k
Is this ok [y/N]: y
Downloading Packages:
epel-release-9-5.el9.noarch.rpm 62 kB/s | 18 kB 00:00
--

Total 23 kB/s | 18 kB 00:00
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
Preparing : 1/1
Installing : epel-release-9-5.el9.noarch 1/1
Running scriptlet: epel-release-9-5.el9.noarch 1/1

Many EPEL packages require the CodeReady Builder (CRB) repository.
It is recommended that you run /usr/bin/crb enable to enable the CRB repository.

Verifying : epel-release-9-5.el9.noarch 1/1

Installed:
epel-release-9-5.el9.noarch

Complete!

Add the option -y to skip confirmation. If the package is already installed, install will up-
grade the package to the latest version.

[student@el ~]$ sudo dnf install -y sudo
Last metadata expiration check: 0:01:45 ago on Sun 25 Feb 2024 07:43:07 PM UTC.
Package sudo-1.9.5p2-9.el9.x86_64 is already installed.
Dependencies resolved.
==
Package Architecture Version Repository Size
==
Upgrading:
sudo x86_64 1.9.5p2-10.el9_3 baseos 1.0 M

Transaction Summary
==
Upgrade 1 Package

Total download size: 1.0 M
Downloading Packages:

29

2. package management

sudo-1.9.5p2-10.el9_3.x86_64.rpm 3.0 MB/s | 1.0 MB 00:00
--

Total 1.3 MB/s | 1.0 MB 00:00
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
Preparing : 1/1
Upgrading : sudo-1.9.5p2-10.el9_3.x86_64 1/2
Running scriptlet: sudo-1.9.5p2-10.el9_3.x86_64 1/2
Cleanup : sudo-1.9.5p2-9.el9.x86_64 2/2
Running scriptlet: sudo-1.9.5p2-9.el9.x86_64 2/2
Verifying : sudo-1.9.5p2-10.el9_3.x86_64 1/2
Verifying : sudo-1.9.5p2-9.el9.x86_64 2/2

Upgraded:
sudo-1.9.5p2-10.el9_3.x86_64

Complete!

You can add more than one parameter here.

[student@el ~]$ sudo dnf install httpd mod_ssl mariadb-server php php-mysqlnd

2.3.6. dnf upgrade

To bring all applications up to date by downloading and installing them, issue dnf upgrade.
All software that was installed via dnfwill be updated to the latest version that is available in
the repository.

[student@el ~]$ sudo dnf upgrade
Last metadata expiration check: 0:05:19 ago on Sun 25 Feb 2024 07:43:07 PM UTC.
Dependencies resolved.
==
Package Arch Version Repository Size
==
Installing:
kernel x86_64 5.14.0-362.18.1.el9_3 baseos 9.4 k
Upgrading:
epel-release noarch 9-7.el9 epel 19 k
gnutls x86_64 3.7.6-23.el9_3.3 baseos 1.0 M
[^^.]

Transaction Summary
==
Install 10 Packages
Upgrade 12 Packages

Total download size: 89 M
Is this ok [y/N]: y
Downloading Packages:
(1/22): graphite2-1.3.14-9.el9.x86_64.rpm 189 kB/s | 94 kB 00:00
(2/22): freetype-2.10.4-9.el9.x86_64.rpm 752 kB/s | 387 kB 00:00
[^^.]
Complete!

30

2.3. the Red Hat package manager (rpm)

If you only want to update one package, use dnf upgrade $package. It behaves the same
as dnf install $package.

2.3.7. dnf provides

To search for a package containing a certain file use dnf provides $filename (or globbing
pattern). This is especially useful if youwant to install a specific command that has a different
name than the package name. For example, say that you’ve heard about the ag command
that is a faster alternative to grep. The command dnf search ag spews out toomuchoutput,
so no useful results:

[student@el ~]$ dnf search ag | wc -l
Last metadata expiration check: 0:02:48 ago on Sun 25 Feb 2024 07:55:24 PM UTC.
2979

Listing available packages with ag shows that there is no such package:

[student@el ~]$ dnf list --available ag
Last metadata expiration check: 0:04:05 ago on Sun 25 Feb 2024 07:55:24 PM UTC.
Error: No matching Packages to list
[student@el ~]$ dnf list --available ag*
Last metadata expiration check: 0:04:09 ago on Sun 25 Feb 2024 07:55:24 PM UTC.
Available Packages
Agda.x86_64 2.6.2.2-36.el9 epel
Agda-common.noarch 2.6.2.2-36.el9 epel
aggregate6.noarch 1.0.12-2.el9 epel
agrep.x86_64 0.8.0-34.20140228gitc2f5d13.el9 epel

The last package looks promising, but it’s not the one we’re looking for. So let’s use dnf
provides to find out which package contains the ag command. If the command is ag, we
expect that it is installed in one of the bin/ directories, i.e. /bin, /usr/bin, /sbin, /usr/sbin,
/usr/local/bin, /usr/local/sbin, /usr/local/bin, /usr/local/sbin. We can summa-
rize the possible path names with globbing pattern *bin/ag:

[student@el ~]$ dnf provides *bin/ag
Last metadata expiration check: 0:07:13 ago on Sun 25 Feb 2024 07:55:24 PM UTC.
the_silver_searcher-2.2.0^2020704.5a1c8d8-3.el9.x86_64 : Super-fast text

: searching tool (ag)
Repo : epel
Matched from:
Other : *bin/ag
[student@el ~]$ sudo dnf install -y the_silver_searcher

So the name of the package is the_silver_searcher (ag being the chemical symbol for
silver) and it is provided by the EPEL repository (Extra Packages for Enterprise Linux). We
can install it with dnf install the_silver_searcher.

2.3.8. dnf remove

Removing a package is done with dnf remove $package. This will remove the package and
all its dependencies that are not needed by other packages.

31

https://github.com/ggreer/the_silver_searcher
https://docs.fedoraproject.org/en-US/epel/

2. package management

[student@el ~]$ sudo dnf remove net-tools
Dependencies resolved.
==
Package Arch Version Repository Size
==
Removing:
net-tools x86_64 2.0-0.62.20160912git.el9 @anaconda 912 k

Transaction Summary
==
Remove 1 Package

Freed space: 912 k
Is this ok [y/N]: y
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
Preparing : 1/1
Erasing : net-tools-2.0-0.62.20160912git.el9.x86_64 1/1
Verifying : net-tools-2.0-0.62.20160912git.el9.x86_64 1/1

Removed:
net-tools-2.0-0.62.20160912git.el9.x86_64

Complete!

By theway, this package, net-tools, contains commands that are considered to be obsolete
and have been replaced by other, newer implementations. You don’t really need it, so it’s a
good example for this section. If you removed it, feel free to reinstall it if you want!

2.3.9. dnf software groups

Issue dnf grouplist to see a list of all available software groups.

[student@el ~]$ dnf grouplist
Last metadata expiration check: 1:00:37 ago on Sun 25 Feb 2024 07:55:24 PM UTC.
Available Environment Groups:

Server with GUI
Server
Minimal Install
Workstation
KDE Plasma Workspaces
Virtualization Host
Custom Operating System

Available Groups:
RPM Development Tools
.NET Development
Container Management
Console Internet Tools
Graphical Administration Tools
Scientific Support
Headless Management
Smart Card Support
Legacy UNIX Compatibility
Security Tools

32

2.3. the Red Hat package manager (rpm)

Network Servers
System Tools
Development Tools
Fedora Packager
VideoLAN Client
Xfce

To install a set of applications, brought together via a group, use yum groupinstall $group-
name.

[student@el ~]$ sudo dnf groupinstall 'Security Tools'
Last metadata expiration check: 1:00:35 ago on Sun 25 Feb 2024 08:03:34 PM UTC.
Dependencies resolved.
==
Package Arch Version Repository Size
==
Installing group/module packages:
scap-security-guide noarch 0.1.69-3.el9_3.alma.1 appstream 813 k
Installing dependencies:
libtool-ltdl x86_64 2.4.6-45.el9 appstream 36 k
libxslt x86_64 1.1.34-9.el9 appstream 240 k
openscap x86_64 1:1.3.8-1.el9_2.alma.2 appstream 1.9 M
openscap-scanner x86_64 1:1.3.8-1.el9_2.alma.2 appstream 57 k
xml-common noarch 0.6.3-58.el9 appstream 31 k
xmlsec1 x86_64 1.2.29-9.el9 appstream 189 k
xmlsec1-openssl x86_64 1.2.29-9.el9 appstream 90 k
Installing Groups:
Security Tools

Transaction Summary
==
Install 8 Packages

Total download size: 3.3 M
Installed size: 103 M
Is this ok [y/N]:
[^^.]

Read the manual page of dnf for more information about managing groups in dnf. In prac-
tice, chances are that you won’t need this feature very often.

2.3.10. rpm -qa

In the following sections, we’ll show what you can do with the rpm command.

To obtain a list of all installed software, use the rpm -qa command.

[student@el ~]$ rpm -qa | grep ssh
libssh-config-0.10.4-11.el9.noarch
libssh-0.10.4-11.el9.x86_64
openssh-8.7p1-34.el9.x86_64
openssh-clients-8.7p1-34.el9.x86_64
openssh-server-8.7p1-34.el9.x86_64

33

2. package management

2.3.11. rpm -q

To verify whether one package is installed, use rpm -q.

[student@el ~]$ rpm -q vim-enhanced
package vim-enhanced is not installed
[student@el ~]$ rpm -q vim-minimal
vim-minimal-8.2.2637-20.el9_1.x86_64
[student@el ~]$ rpm -q kernel
kernel-5.14.0-362.8.1.el9_3.x86_64
kernel-5.14.0-362.13.1.el9_3.x86_64
kernel-5.14.0-362.18.1.el9_3.x86_64

2.3.12. rpm -ql

To see which files are installed by a package, use rpm -ql.

[student@el ~]$ rpm -ql vim-minimal
/etc/virc
/usr/bin/ex
/usr/bin/rvi
/usr/bin/rview
/usr/bin/vi
/usr/bin/view
/usr/lib/.build-id
/usr/lib/.build-id/c6
/usr/lib/.build-id/c6/aa3d8d79f09dd48e99475c332bed4df39d76e1
/usr/libexec/vi
/usr/share/man/man1/ex.1.gz
/usr/share/man/man1/rvi.1.gz
/usr/share/man/man1/rview.1.gz
/usr/share/man/man1/vi.1.gz
/usr/share/man/man1/view.1.gz
/usr/share/man/man5/virc.5.gz

2.3.13. rpm -Uvh

To install or upgrade a package, use the -Uvh switches. The -U switch is the same as -i for
install, except that older versions of the software are removed. The -vh switches are for nicer
output.

Youwould typically use this command to install an .rpm package that you have downloaded
from the internet. Beware, though, that rpm does not resolve dependencies, so you might
need to install other packages first.

[student@el ~]$ sudo rpm -Uvh ./htop-3.3.0-1.el9.x86_64.rpm
error: Failed dependencies:

libhwloc.so.15()(64bit) is needed by htop-3.3.0-1.el9.x86_64

34

2.3. the Red Hat package manager (rpm)

2.3.14. rpm -e

To remove a package, use the -e switch.

[student@el ~]$ rpm -q net-tools
net-tools-2.0-0.62.20160912git.el9.x86_64
[student@el ~]$ sudo rpm -e net-tools
[student@el ~]$ rpm -q net-tools
package net-tools is not installed

rpm -e verifies dependencies, and thuswill prevent you fromaccidentailly erasing packages
that are needed by other packages.

[student@el ~]$ sudo rpm -e slang
error: Failed dependencies:

libslang.so.2()(64bit) is needed by (installed) newt-0.52.21-
11.el9.x86_64

libslang.so.2(SLANG2)(64bit) is needed by (installed) newt-0.52.21-
11.el9.x86_64

2.3.15. Package cache

When dnf installs or upgrades a package, it will download the package from the repository
and store it temporarily in the cache. The cache also contains repository metadata. The
default location of the cache is /var/cache/dnf. You can clean the cache with dnf clean
all.

[student@el ~]$ dnf clean all
51 files removed

Remark that .rpm files will normally be removed automatically after they were installed suc-
cessfully. You can change this behavior in /etc/dnf/dnf.conf by setting keepcache=1.

2.3.16. Configuration

The main configuration file for dnf is /etc/dnf/dnf.conf. This file contains a few basic set-
tings. The location of package repositories that are available to the system are kept in the
directory /etc/yum.repos.d/. Each repository has its own file, with a .repo extension.

[student@el ~]$ ls /etc/yum.repos.d/
almalinux-appstream.repo almalinux-resilientstorage.repo
almalinux-baseos.repo almalinux-rt.repo
almalinux-crb.repo almalinux-saphana.repo
almalinux-extras.repo almalinux-sap.repo
almalinux-highavailability.repo epel-cisco-openh264.repo
almalinux-nfv.repo epel.repo
almalinux-plus.repo epel-testing.repo

A repo file is a text file in the INI format, and contains information about the repository, such
as the name, the base URL, the GPG key, etc. Here’s an example with part of the contents of
the epel.repo file:

35

https://en.wikipedia.org/wiki/INI_file

2. package management

1 [epel]
2 name=Extra Packages for Enterprise Linux $releasever - $basearch
3 ^# It is much more secure to use the metalink, but if you wish to use a local

mirror↪
4 ^# place its address here.
5 #baseurl=https:^/download.example/pub/epel/$releasever/Everything/$basearch/

↪
6 metalink=https:^/mirrors.fedoraproject.org/metalink?repo=epel-

$releasever&arch=$basearch&infra=$infra&content=$contentdir↪
7 enabled=1
8 gpgcheck=1
9 countme=1
10 gpgkey=file:^^/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-$releasever

2.3.17. Working with multiple repositories

You can get a list of the currently enabled repositories with dnf repolist.

[student@el ~]$ dnf repolist
repo id repo name
appstream AlmaLinux 9 - AppStream
baseos AlmaLinux 9 - BaseOS
epel Extra Packages for Enterprise Linux 9 - x86_64
epel-cisco-openh264 Extra Packages for Enterprise Linux 9 openh264 (From Cisco) -
x86_64
extras AlmaLinux 9 - Extras

And specific information about a repository with dnf repoinfo $repo.

[student@el ~]$ dnf repoinfo epel-testing
Last metadata expiration check: 0:02:40 ago on Sun 25 Feb 2024 10:32:04 PM UTC.
Repo-id : epel-testing
Repo-name : Extra Packages for Enterprise Linux 9 - Testing - x86_64
Repo-status : disabled
Repo-metalink : https:^/mirrors.fedoraproject.org/metalink?repo=testing-
epel9&arch=x86_64&infra=$infra&content=$contentdir
Repo-expire : 172,800 second(s) (last: unknown)
Repo-filename : /etc/yum.repos.d/epel-testing.repo
Total packages: 0

One important flag for dnf is ^-enablerepo. Use this command if you want to use a reposi-
tory that is not enabled by default. For example, let’s say youwant to install the latest version
of fail2ban, but the one in the “normal” repository is too old:

[student@el ~]$ dnf list --available fail2ban
Last metadata expiration check: 0:01:44 ago on Sun 25 Feb 2024 10:32:04 PM UTC.
Available Packages
fail2ban.noarch 1.0.2-7.el9 epel

Maybe epel-testing has a newer version:

[student@el ~]$ dnf list --available --repo epel-testing fail2ban
Last metadata expiration check: 0:06:10 ago on Sun 25 Feb 2024 10:30:33 PM UTC.
Available Packages
fail2ban.noarch 1.0.2-12.el9 epel-testing

36

2.4. pip, the Python package manager

It does, but you won’t be able to install it due to the fact that epel-testing is disabled. How-
ever, you can temporarily enable it with the ^-enablerepo flag:

[student@el ~]$ sudo dnf install --enablerepo=epel-testing fail2ban
[sudo] password for student:
Last metadata expiration check: 0:13:34 ago on Sun 25 Feb 2024 10:24:12 PM UTC.
Dependencies resolved.
==
Package Arch Version Repository Size
==
Installing:
fail2ban noarch 1.0.2-12.el9 epel-testing 8.8 k
Installing dependencies:
esmtp x86_64 1.2-19.el9 epel 52 k
fail2ban-firewalld noarch 1.0.2-12.el9 epel-testing 8.9 k
fail2ban-selinux noarch 1.0.2-12.el9 epel-testing 29 k
fail2ban-sendmail noarch 1.0.2-12.el9 epel-testing 12 k
fail2ban-server noarch 1.0.2-12.el9 epel-testing 444 k
libesmtp x86_64 1.0.6-24.el9 epel 66 k
liblockfile x86_64 1.14-10.el9 baseos 28 k

Transaction Summary
==
Install 8 Packages

Total download size: 647 k
Installed size: 1.8 M
Is this ok [y/N]:

2.4. pip, the Python package manager

Some programming languages, a.o. Python, have their own package management system
that allows you to install applications and/or libraries. In the case of Python, the package
manager is called pip. It is used to install Python packages from the Python Package Index
(PyPI). In fact, there aremultiple packagemanagers for Python (a.o. easy_install, conda, etc.),
but pip is the most widely used.

As a system administrator, or as an end user, this sometimes puts you in a difficult position.
Some widely known and used Python libraries can be installed both through your distribu-
tion’s package manager, and through pip. Which one to choose is not always clear. In gen-
eral, it is best to use the distribution’s packagemanager, as it will integrate the package into
the system and will be updated when the system is updated. However, some packages are
not available in the distribution’s repositories, or the version you get with pip is more recent.
In that case, you can use pip to install the package.

Another thing to note is that pip can be used as a normal user, or as root, and in each case it
will install the package in a different location. When you install a package as a normal user,
it will be installed in your home directory, and will only be available to you. When you install
a package as root, it will be installed system-wide, and will be available to all users. However,
if you install a package as root, you will get a warning message:

WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https:^/pip.pypa.io/warnings/venv

A virtual environment is a way to create an isolated environment for a Python project, where
you can install packages without affecting the system’s Python installation. This is especially
useful when you are developing Python applications, and you want to make sure that the

37

https://www.python.org
https://pypi.org

2. package management

libraries you use are the same as the ones used in production. Using and managing virtual
environments is beyond the scope of this course, but you can find more information in the
Python documentation.

As general guidelines, we suggest the following:

• If the library or application is available in the distribution’s repositories, use the distribu-
tion’s package manager to install it.

• Avoid installing Python libraries or applications system-wide as root using pip.
• Normal usersmay use pip to install Python libraries or applications in their home direc-
tory.

2.4.1. installing pip

pipmaynot be installed by default on your system. You can install it using your distribution’s
package manager. For example, on Debian-based systems, you can install it using apt:

1 student@debian:~$ sudo apt install python3-pip

On Red Hat-based systems, you can install it using dnf:

1 student@el ~$ sudo dnf install python3-pip

2.4.2. listing packages

You can list the packages installed with pip using the list command:

student@linux:~$ pip list
Package Version
--------------- --------
dbus-python 1.2.18
distro 1.5.0
gpg 1.15.1
libcomps 0.1.18
nftables 0.1
pip 21.2.3
PyGObject 3.40.1
python-dateutil 2.8.1
PyYAML 5.4.1
rpm 4.16.1.3
selinux 3.5
sepolicy 3.5
setools 4.4.3
setuptools 53.0.0
six 1.15.0
systemd-python 234

2.4.3. searching for packages

Searching for packages canNOT be done on the command line. To search for packages, you
can use the Python Package Index website instead. If you try pip search, you will get an
error message:

student@linux:~$ pip search ansible
ERROR: XMLRPC request failed [code: -32500]
RuntimeError: PyPI no longer supports 'pip search' (or XML-RPC search). Please use https:^/pypi.org/search (via a browser) instead. See https:^/warehouse.pypa.io/api-
reference/xml-rpc.html#deprecated-methods for more information.

38

https://docs.python.org/3/library/venv.html
https://pypi.org

2.5. container-based package managers

2.4.4. installing packages

You can install a package using the install command:

student@linux:~$ pip install ansible

Just like apt and dnf, pipwill install the package and its dependencies.

2.4.5. removing packages

Uninstalling a package is done with the uninstall command:

student@linux:~$ pip uninstall ansible

Unfortunately, dependencies are not removed when you uninstall a package with pip.

2.5. container-based package managers

With the release of Docker, container-based virtualization has become very popular as a
method of distributing and deploying applications on servers. One of the advantages of
containers is that they offer a sandbox environment for applications, meaning the applica-
tion and its dependencies are isolated from the rest of the system. This makes it possible
to run applications with different dependencies on the same server, without the risk of con-
flicts. Containers are also very lightweight, they don’t impose much overhead on the host
system.

Now, there is no reason why containers can’t be used to deploy applications on desktop sys-
tems as well. In fact, there are several container-based package managers that allow you
to install and run applications in containers on your desktop. The advantage is that third
party software vendors can distribute their applications independent of the Linux distribu-
tion, so they don’t need to maintain different packages for (each family of) distribution(s).
The disadvantage is that each application comes with their own dependencies, so you lose
the advantage of sharing libraries between applications. Also, since the application is run-
ning in a container, it may not integrate well with the rest of the system, or may have only
limited permissions to access files or other resources on your computer.

As with many Linux-based technologies, there are multiple tools to choose from. The most
popular ones are Flatpak and Snap.

2.5.1. flatpak

Flatpak is a container-based packagemanager developedby an independent community of
contributors, volunteers and supporting organizations. It is available for most Linux distribu-
tions and is supported by a large number of third party software vendors. Red Hat was one
of the first to endorse Flatpak, and many others followed. Fedora Silverblue is a variant of
Fedora that uses Flatpak as its primary package manager. Linux Mint also has Flatpak sup-
port enabled by default: in the Software Manager, some applications like Bitwarden, Slack,
VS Code, etc. are available as Flatpaks.

If you want to use a container based package manager, Flatpak is probably the best choice
for any Linux distribution other than Ubuntu.

In the following example, we’ll install the open source password manager Bitwarden with
Flatpak on a Linux Mint system. Remark that you don’t need to be root to install Flatpak
applications!

39

https://flatpak.org
https://snapcraft.io
https://flatpak.org

2. package management

student@mint:~$ flatpak search Bitwarden
Name Description Application ID Version Branch Remotes
Bitwarden A secure and free password manager for com.bitwarden.desktop 2024.2.0 stable flathub
Goldwarden A Bitwarden compatible desktop client com.quexten.Goldwarden 0.2.13 stable flathub
student@mint:~$ flatpak install Bitwarden
Looking for matches…
Found ref ‘app/com.bitwarden.desktop/x86_64/stable’ in remote ‘flathub’ (system).
Use this ref? [Y/n]: y
Required runtime for com.bitwarden.desktop/x86_64/stable (runtime/org.freedesktop.Platform/x86_64/23.08) found in remote flathub
Do you want to install it? [Y/n]: y

com.bitwarden.desktop permissions:
ipc network wayland x11 dri file access [1]
dbus access [2] system dbus access [3]

[1] xdg-download
[2] com.canonical.AppMenu.Registrar, org.freedesktop.Notifications, org.freedesktop.secrets, org.kde.StatusNotifierWatcher
[3] org.freedesktop.login1

ID Branch Op Remote Download
1. [✓] com.bitwarden.desktop.Locale stable i flathub 300.7 kB / 9.8 MB
2. [✓] org.freedesktop.Platform.GL.default 23.08 i flathub 162.0 MB / 162.3 MB
3. [✓] org.freedesktop.Platform.GL.default 23.08-extra i flathub 17.9 MB / 162.3 MB
4. [✓] org.freedesktop.Platform.Locale 23.08 i flathub 17.9 kB / 359.9 MB
5. [✓] org.freedesktop.Platform 23.08 i flathub 171.6 MB / 225.6 MB
6. [✓] com.bitwarden.desktop stable i flathub 132.5 MB / 133.4 MB

Installation complete.

To remove a Flatpak application, you can use the uninstall command:

student@mint:~$ flatpak uninstall Bitwarden
Found installed ref ‘app/com.bitwarden.desktop/x86_64/stable’ (system). Is this correct? [Y/n]: y

ID Branch Op
1. [-] com.bitwarden.desktop stable r
2. [-] com.bitwarden.desktop.Locale stable r

Uninstall complete.

2.5.2. snap

Snap was developed by Canonical and is installed by default on Ubuntu. It is also available
for other distributions (like the official Ubuntu derivatives, Solus and Zorin OS), but it is not
as widely supported as Flatpak. Snap was also designed to work for cloud applications and
Internet of Things devices.

In the following example, we’ll install Grafana on an Ubuntu Server system.

student@ubuntu:~$ snap search grafana
Name Version Publisher Notes Summary
grafana 6.7.4 canonical✓ - feature rich metrics dashboard and graph editor
grafana-agent 0.35.4 0x12b - Telemetry Agent
[^^.]
student@ubuntu:~$ sudo snap install grafana
grafana 6.7.4 from Canonical✓ installed

40

https://snapcraft.io
https://grafana.com

2.6. downloading software outside the repository

To uninstall a Snap application, you can use the remove command:

student@ubuntu:~$ sudo snap remove grafana
grafana removed

2.6. downloading software outside the repository

These days, the case where you need software that is not available as a binary package has
become exceedingly rare. However, if youwant to install some experimental tool that hasn’t
been packaged yet, or youwant to test the very latest experimental version of an application,
youmay have to download the source code and compile it yourself. Usually, the source code
is available on the project’s website or on a code hosting platform like GitHub, GitLab or
Bitbucket. You then either download the source code as a tgz, .tar.gz, .tar.bz2, tar.xz
file (also called a tarball) or you can clone the repository using git.
In the example below, we assume that you have downloaded the source code of an appli-
cation written in C or C++, as is common for many Linux applications. Remark that in order
to be able to compile the source code, you need to have the C compiler gcc and the build
tool make installed on your system. You can install these using your distribution’s package
manager. Also, many applications depend on other libraries, which also have to be installed
as source.

2.6.1. example: compiling zork

As an example, we will download the source code for Zork, an ancient text based adventure
game, and compile it on a Fedora system. The source code is available on GitHub. We have
installed git, gcc and make beforehand.

[student@fedora ~]$ git clone https:^/github.com/devshane/zork.git
Cloning into 'zork'^^.
remote: Enumerating objects: 79, done.
remote: Total 79 (delta 0), reused 0 (delta 0), pack-reused 79
Receiving objects: 100% (79/79), 241.70 KiB | 2.14 MiB/s, done.
Resolving deltas: 100% (20/20), done.
[student@fedora ~]$ cd zork/
[student@fedora zork]$ ls
actors.c demons.c dmain.c dso3.c dso6.c dtextc.dat dverb2.c history Makefile np2.c nrooms.c README.md sobjs.c vars.h
ballop.c dgame.c dso1.c dso4.c dso7.c dungeon.6 funcs.h lightp.c nobjs.c np3.c objcts.c readme.txt supp.c verbs.c
clockr.c dinit.c dso2.c dso5.c dsub.c dverb1.c gdt.c local.c np1.c np.c parse.h rooms.c sverbs.c villns.c
[student@fedora ~]$ make
cc -g -c -o actors.o actors.c
cc -g -c -o ballop.o ballop.c
cc -g -c -o clockr.o clockr.c
[^^.etc^^.]
cc -g -o zork actors.o ballop.o clockr.o demons.o dgame.o dinit.o dmain.o dso1.o dso2.o dso3.o dso4.o dso5.o dso6.o dso7.o dsub.o dverb1.o dverb2.o gdt.o lightp.o local.o nobjs.o np.o np1.o np2.o np3.o nrooms.o objcts.o rooms.o sobjs.o supp.o sverbs.o verbs.o villns.o -
ltermcap
/usr/bin/ld: cannot find -ltermcap: No such file or directory
collect2: error: ld returned 1 exit status
make: ^^* [Makefile:69: dungeon] Error 1

As you can see, the make command fails because it cannot find the termcap library. This is
a library that is used to control the terminal, and it is not installed on our system. This is a
common problem when you try to install packages from source. You need to install these
dependencies yourself and these are not always easy to find. In this case, we can install the
ncurses-devel library, which is a modern replacement for termcap. How did we now that?

41

https://github.com
https://gitlab.com
https://bitbucket.org
https://github.com/devshane/zork

2. package management

We used dnf provides to find library files that contain the string termcap (remark that the
command took a long time to finish):

[student@fedora zork]$ dnf provides '*libtermcap.so*'
Last metadata expiration check: 1:56:05 ago on Mon 26 Feb 2024 05:46:43 PM UTC.
ncurses-devel-6.4-7.20230520.fc39.i686 : Development files for the ncurses library
Repo : fedora
Matched from:
Other : *libtermcap.so*
[student@fedora ~]$ sudo dnf install ncurses-devel
[^^.etc^^.]

Let’s try to compile again:

[student@fedora zork]$ make
cc -g -c -o actors.o actors.c
cc -g -c -o ballop.o ballop.c
[^^.etc^^.]
cc -g -c -o villns.o villns.c
cc -g -o zork actors.o ballop.o clockr.o demons.o dgame.o dinit.o dmain.o dso1.o dso2.o dso3.o dso4.o dso5.o dso6.o dso7.o dsub.o dverb1.o dverb2.o gdt.o lightp.o local.o nobjs.o np.o np1.o np2.o np3.o nrooms.o objcts.o rooms.o sobjs.o supp.o sverbs.o verbs.o villns.o -
ltermcap
[student@fedora zork]$

The command seems to have succeeded. The current directory now contains a new file
called zork. This is the compiled application and it has execute permissions. You can run it
by typing ./zork:

[student@fedora zork]$ ls -l zork
-rwxr-xr-x. 1 vagrant vagrant 400968 Feb 26 19:45 zork
[student@fedora zork]$ file zork
zork: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-
linux-x86-64.so.2, BuildID[sha1]=3089e3cb1c1a7fc1cc1db41c3aa578c0b52f83f3, for GNU/Linux 3.2.0, with debug_info, not stripped
[student@fedora zork]$./zork
Welcome to Dungeon. This version created 11-MAR-91.
You are in an open field west of a big white house with a boarded
front door.
There is a small mailbox here.
>

In this case, installing the game is as simple as copying the zork file to a directory in your
PATH, like /usr/local/bin or (for a computer game) /usr/local/games. However, most
Makefiles provide a way to install the application in the system, usually by running make in-
stall. This will copy the executable, manual pages and other documentation to the correct
location.

[student@fedora zork]$ sudo make install
mkdir -p /usr/games /usr/share/man/man6
cp zork /usr/games
cp dtextc.dat /usr/games/lib
cp dungeon.6 /usr/share/man/man6/

Remark that the “official” location where manually installed applications belong in a Linux
directory structure is /usr/local (for applications that follow the FilesystemHierarchy Stan-
dard) or /opt (for applications that want to keep all files in a single directory).

42

2.7. practice: package management

2.6.2. installing from a tarball

Before unpacking a tarball, it’s useful to check its contents:

student@linux:~$ tar tf $downloadedFile.tgz

The t option lists the content of the archive, f should be followed by the filename of the tar-
ball. For .tgz, youmay add option z and for .tar.bz2 option j. However, the tar command
should recognize the compression method automatically.

Check whether the package archive unpacks in a subdirectory (which is the preferred case)
or in the current directory and create a subdirectory yourself if necessary. After that, you can
unpack the tarball:

student@linux:~$ tar xf $downloadedFile.tgz

Now, be sure to read the README file carefully! Normally the readmewill explain what to do
after download.

Usually the steps are always the same three:

1. running a script ./configure. It will gather information about your system that is
needed to compile the software so that it can actually run on your system

2. executing the command make (which is the actual compiling)
3. finally, executing make install to copy the files to their proper location.

2.7. practice: package management

1. Verify whether gcc, sudo and zork are installed.
2. Use dnf or apt to search for and install the scp, tmux, and man-pages packages. Did you

find them all?

3. Search the internet for ’webmin’ and figure out how to install it.

4. If time permits, search for and install samba including the samba docs pdf files (thou-
sands of pages in two pdf’s).

2.8. solution: package management

1. Verify whether gcc, sudo and zork are installed.

On Enterprise Linux:

rpm -qa | grep gcc
rpm -qa | grep sudo
rpm -qa | grep zork

On Debian/Ubuntu:

dpkg -l | grep gcc
dpkg -l | grep sudo
dpkg -l | grep zork

2. Use dnf or apt to search for and install the scp, tmux, and man-pages packages. Did you
find them all ?

On Red Hat/CentOS:

43

2. package management

dnf search scp
dnf search tmux
dnf search man-pages

On Debian/Ubuntu:

apt search scp
apt search tmux
apt search man-pages

3. Search the internet for ‘webmin’ and figure out how to install it.

Google should point you to webmin.com. The download page helps you to download a
repository file so you can install webmin with your package manager. The latest Web-
min distribution is available in various package formats for download, a.o. .rpm, .deb,
etc.

4. If time permits, search for and install samba including the samba docs pdf files (thou-
sands of pages in two pdf’s).

44

https://webmin.com/
https://webmin.com/download/

Part III.

Scripting 101

45

3. I/O redirection

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

One of the powers of the Unix command line is the use of input/output redirection and
pipes.

This chapter explains redirection of input, output and error streams.

3.1. stdin, stdout, and stderr

The bash shell has three basic streams; it takes input from stdin (stream 0), it sends output
to stdout (stream 1) and it sends error messages to stderr (stream 2) .

The drawing below has a graphical interpretation of these three streams.

The keyboard often serves as stdin, whereas stdout and stderr both go to the display. This
can be confusing to new Linux users because there is no obvious way to recognize stdout
from stderr. Experienced users know that separating output from errors can be very use-
ful.

The next sections will explain how to redirect these streams.

3.2. output redirection

3.2.1. > stdout

stdout can be redirected with a greater than sign. While scanning the line, the shell will
see the > sign and will clear the file.

47

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

3. I/O redirection

The > notation is in fact the abbreviation of 1> (stdout being referred to as stream 1).

[student@linux ~]$ echo It is cold today!
It is cold today!
[student@linux ~]$ echo It is cold today! > winter.txt
[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$

Note that the bash shell effectively removes the redirection from the command line before
argument 0 is executed. This means that in the case of this command:

echo hello > greetings.txt

the shell only counts twoarguments (echo = argument0, hello = argument 1). The redirection
is removed before the argument counting takes place.

3.2.2. output file is erased

While scanning the line, the shell will see the > sign and will clear the file! Since this
happens before resolving argument 0, this means that even when the command fails, the
file will have been cleared!

[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found
[student@linux ~]$ cat winter.txt
[student@linux ~]$

3.2.3. noclobber

Erasing a file while using > can be prevented by setting the noclobber option.

[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$ set -o noclobber
[student@linux ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[student@linux ~]$ set +o noclobber
[student@linux ~]$

48

3.3. error redirection

3.2.4. overruling noclobber

The noclobber can be overruled with >|.

[student@linux ~]$ set -o noclobber
[student@linux ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[student@linux ~]$ echo It is very cold today! >| winter.txt
[student@linux ~]$ cat winter.txt
It is very cold today!
[student@linux ~]$

3.2.5. » append

Use ^> to append output to a file.

[student@linux ~]$ echo It is cold today! > winter.txt
[student@linux ~]$ cat winter.txt
It is cold today!
[student@linux ~]$ echo Where is the summer ? >> winter.txt
[student@linux ~]$ cat winter.txt
It is cold today!
Where is the summer ?
[student@linux ~]$

3.3. error redirection

3.3.1. 2> stderr

Redirecting stderr is done with 2>. This can be very useful to prevent error messages from
cluttering your screen.

The screenshotbelowshows redirectionof stdout to afile, andstderr to/dev/null. Writing
1> is the same as >.

[student@linux ~]$ find / > allfiles.txt 2> /dev/null
[student@linux ~]$

3.3.2. 2>&1

To redirect both stdout and stderr to the same file, use 2>&1.

[student@linux ~]$ find / > allfiles_and_errors.txt 2>&1
[student@linux ~]$

Note that the order of redirections is significant. For example, the command

49

3. I/O redirection

ls > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the
file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard errormade a copy of the
standard output before the standard output was redirected to dirlist.

3.4. output redirection and pipes

By default you cannot grep inside stderrwhen using pipes on the command line, because
only stdout is passed.

student@linux:~$ rm file42 file33 file1201 | grep file42
rm: cannot remove ‘file42’: No such file or directory
rm: cannot remove ‘file33’: No such file or directory
rm: cannot remove ‘file1201’: No such file or directory

With 2>&1 you can force stderr to go to stdout. This enables the next command in the pipe
to act on both streams.

student@linux:~$ rm file42 file33 file1201 2>&1 | grep file42
rm: cannot remove ‘file42’: No such file or directory

You cannot use both 1>&2 and 2>&1 to switch stdout and stderr.

student@linux:~$ rm file42 file33 file1201 2>&1 1>&2 | grep file42
rm: cannot remove ‘file42’: No such file or directory
student@linux:~$ echo file42 2>&1 1>&2 | sed 's/file42/FILE42/'
FILE42

You need a third stream to switch stdout and stderr after a pipe symbol.

student@linux:~$ echo file42 3>&1 1>&2 2>&3 | sed 's/file42/FILE42/'
file42
student@linux:~$ rm file42 3>&1 1>&2 2>&3 | sed 's/file42/FILE42/'
rm: cannot remove ‘FILE42’: No such file or directory

3.5. joining stdout and stderr

The &> construction will put both stdout and stderr in one stream (to a file).

student@linux:~$ rm file42 &> out_and_err
student@linux:~$ cat out_and_err
rm: cannot remove ‘file42’: No such file or directory
student@linux:~$ echo file42 &> out_and_err
student@linux:~$ cat out_and_err
file42
student@linux:~$

50

3.6. input redirection

3.6. input redirection

3.6.1. < stdin

Redirecting stdin is done with < (short for 0<).

[student@linux ~]$ cat < text.txt
one
two
[student@linux ~]$ tr 'onetw' 'ONEZZ' < text.txt
ONE
ZZO
[student@linux ~]$

3.6.2. « here document

The here document (sometimes called here-is-document) is a way to append input until a
certain sequence (usually EOF) is encountered. The EOFmarker can be typed literally or can
be called with Ctrl-D.

[student@linux ~]$ cat <<EOF > text.txt
> one
> two
> EOF
[student@linux ~]$ cat text.txt
one
two
[student@linux ~]$ cat <<brol > text.txt
> brel
> brol
[student@linux ~]$ cat text.txt
brel
[student@linux ~]$

3.6.3. «< here string

The here string can be used to directly pass strings to a command. The result is the same
as using echo string | command (but you have one less process running).

student@linux~$ base64 <<< linux-training.be
bGludXgtdHJhaW5pbmcuYmUK
student@linux~$ base64 -d <<< bGludXgtdHJhaW5pbmcuYmUK
linux-training.be

See rfc 3548 for more information about base64.

51

3. I/O redirection

3.7. confusing redirection

The shell will scan the whole line before applying redirection. The following command line
is very readable and is correct.

cat winter.txt > snow.txt 2> errors.txt

But this one is also correct, but less readable.

2> errors.txt cat winter.txt > snow.txt

Even this will be understood perfectly by the shell.

< winter.txt > snow.txt 2> errors.txt cat

3.8. quick file clear

So what is the quickest way to clear a file ?

>foo

And what is the quickest way to clear a file when the noclobber option is set ?

>|bar

3.9. practice: input/output redirection

1. Activate the noclobber shell option.

2. Verify that noclobber is active by repeating an ls on /etc/ with redirected output to a
file.

3. When listing all shell options, which character represents the noclobber option ?

4. Deactivate the noclobber option.

5. Make sure youhave two shells openon the samecomputer. Create an empty tailing.txt
file. Then type tail -f tailing.txt. Use the second shell to append a line of text to that
file. Verify that the first shell displays this line.

6. Create a file that contains the names of five people. Use cat and output redirection to
create the file and use a here document to end the input.

52

3.10. solution: input/output redirection

3.10. solution: input/output redirection

1. Activate the noclobber shell option.

set -o noclobber
set -C

2. Verify that noclobber is active by repeating an ls on /etc/ with redirected output to a
file.

ls /etc > etc.txt
ls /etc > etc.txt (should not work)

3. When listing all shell options, which character represents the noclobber option ?

echo $- (noclobber is visible as C)

4. Deactivate the noclobber option.

set +o noclobber

5. Make sure youhave two shells openon the samecomputer. Create an empty tailing.txt
file. Then type tail -f tailing.txt. Use the second shell to append a line of text to that
file. Verify that the first shell displays this line.

student@linux:~$ > tailing.txt
student@linux:~$ tail -f tailing.txt
hello
world

in the other shell:
student@linux:~$ echo hello >> tailing.txt
student@linux:~$ echo world >> tailing.txt

6. Create a file that contains the names of five people. Use cat and output redirection to
create the file and use a here document to end the input.

student@linux:~$ cat > tennis.txt << ace
> Justine Henin
> Venus Williams
> Serena Williams
> Martina Hingis
> Kim Clijsters
> ace
student@linux:~$ cat tennis.txt
Justine Henin
Venus Williams
Serena Williams
Martina Hingis
Kim Clijsters
student@linux:~$

53

4. filters

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Commands that are created to be usedwith a pipe are often called filters. These filters
are very small programs that do one specific thing very efficiently. They can be used as
building blocks.

This chapter will introduce you to the most common filters. The combination of simple
commands and filters in a long pipe allows you to design elegant solutions.

4.1. cat

When between two pipes, the cat command does nothing (except putting stdin on std-
out).

[student@linux pipes]$ tac count.txt | cat | cat | cat | cat | cat
five
four
three
two
one
[student@linux pipes]$

4.2. tee

Writing long pipes in Unix is fun, but sometimes youmay want intermediate results. This is
were tee comes in handy. The tee filter puts stdin on stdout and also into a file. So tee is
almost the same as cat, except that it has two identical outputs.

[student@linux pipes]$ tac count.txt | tee temp.txt | tac
one
two
three
four
five
[student@linux pipes]$ cat temp.txt
five
four
three
two
one
[student@linux pipes]$

55

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

4. filters

4.3. grep

The grep filter is famous among Unix users. The most common use of grep is to filter lines
of text containing (or not containing) a certain string.

[student@linux pipes]$ cat tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[student@linux pipes]$ cat tennis.txt | grep Williams
Serena Williams, usa
Venus Williams, USA

You can write this without the cat.

[student@linux pipes]$ grep Williams tennis.txt
Serena Williams, usa
Venus Williams, USA

One of the most useful options of grep is grep -iwhich filters in a case insensitive way.

[student@linux pipes]$ grep Bel tennis.txt
Justine Henin, Bel
[student@linux pipes]$ grep -i Bel tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
[student@linux pipes]$

Another very useful option is grep -vwhich outputs lines not matching the string.

[student@linux pipes]$ grep -v Fra tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[student@linux pipes]$

And of course, both options can be combined to filter all lines not containing a case insensi-
tive string.

[student@linux pipes]$ grep -vi usa tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
[student@linux pipes]$

With grep -A1 one line after the result is also displayed.

student@linux:~/pipes$ grep -A1 Henin tennis.txt
Justine Henin, Bel
Serena Williams, usa

With grep -B1 one line before the result is also displayed.

56

4.4. cut

student@linux:~/pipes$ grep -B1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel

With grep -C1 (context) one line before and one after are also displayed. All three options
(A,B, and C) can display any number of lines (using e.g. A2, B4 or C20).

student@linux:~/pipes$ grep -C1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa

4.4. cut

The cut filter can select columns from files, depending on a delimiter or a count of bytes.
The screenshot below uses cut to filter for the username and userid in the /etc/passwd file.
It uses the colon as a delimiter, and selects fields 1 and 3.

[[student@linux pipes]$ cut -d: -f1,3 /etc/passwd | tail -4
Figo:510
Pfaff:511
Harry:516
Hermione:517
[student@linux pipes]$

When using a space as the delimiter for cut, you have to quote the space.

[student@linux pipes]$ cut -d" " -f1 tennis.txt
Amelie
Kim
Justine
Serena
Venus
[student@linux pipes]$

This example uses cut to display the second to the seventh character of /etc/passwd.

[student@linux pipes]$ cut -c2-7 /etc/passwd | tail -4
igo:x:
faff:x
arry:x
ermion
[student@linux pipes]$

4.5. tr

You can translate characterswith tr. The screenshot shows the translation of all occurrences
of e to E.

57

4. filters

[student@linux pipes]$ cat tennis.txt | tr 'e' 'E'
AmEliE MaurEsmo, Fra
Kim ClijstErs, BEL
JustinE HEnin, BEl
SErEna Williams, usa
VEnus Williams, USA

Here we set all letters to uppercase by defining two ranges.

[student@linux pipes]$ cat tennis.txt | tr 'a-z' 'A-Z'
AMELIE MAURESMO, FRA
KIM CLIJSTERS, BEL
JUSTINE HENIN, BEL
SERENA WILLIAMS, USA
VENUS WILLIAMS, USA
[student@linux pipes]$

Here we translate all newlines to spaces.

[student@linux pipes]$ cat count.txt
one
two
three
four
five
[student@linux pipes]$ cat count.txt | tr '\n' ' '
one two three four five [student@linux pipes]$

The tr -s filter can also be used to squeeze multiple occurrences of a character to one.

[student@linux pipes]$ cat spaces.txt
one two three

four five six
[student@linux pipes]$ cat spaces.txt | tr -s ' '
one two three
four five six

[student@linux pipes]$

You can also use tr to ’encrypt’ texts with rot13.

[student@linux pipes]$ cat count.txt | tr 'a-z' 'nopqrstuvwxyzabcdefghijklm'
bar
gjb
guerr
sbhe
svir
[student@linux pipes]$ cat count.txt | tr 'a-z' 'n-za-m'
bar
gjb
guerr
sbhe
svir
[student@linux pipes]$

This last example uses tr -d to delete characters.

58

4.6. wc

student@linux:~/pipes$ cat tennis.txt | tr -d e
Amli Maursmo, Fra
Kim Clijstrs, BEL
Justin Hnin, Bl
Srna Williams, usa
Vnus Williams, USA

4.6. wc

Counting words, lines and characters is easy with wc.

[student@linux pipes]$ wc tennis.txt
5 15 100 tennis.txt

[student@linux pipes]$ wc -l tennis.txt
5 tennis.txt
[student@linux pipes]$ wc -w tennis.txt
15 tennis.txt
[student@linux pipes]$ wc -c tennis.txt
100 tennis.txt
[student@linux pipes]$

4.7. sort

The sort filter will default to an alphabetical sort.

student@linux:~/pipes$ cat music.txt
Queen
Brel
Led Zeppelin
Abba
student@linux:~/pipes$ sort music.txt
Abba
Brel
Led Zeppelin
Queen

But the sortfilter hasmany options to tweak its usage. This example shows sorting different
columns (column 1 or column 2).

[student@linux pipes]$ sort -k1 country.txt
Belgium, Brussels, 10
France, Paris, 60
Germany, Berlin, 100
Iran, Teheran, 70
Italy, Rome, 50
[student@linux pipes]$ sort -k2 country.txt
Germany, Berlin, 100
Belgium, Brussels, 10
France, Paris, 60
Italy, Rome, 50
Iran, Teheran, 70

59

4. filters

The screenshot below shows the difference between an alphabetical sort and a numerical
sort (both on the third column).

[student@linux pipes]$ sort -k3 country.txt
Belgium, Brussels, 10
Germany, Berlin, 100
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
[student@linux pipes]$ sort -n -k3 country.txt
Belgium, Brussels, 10
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
Germany, Berlin, 100

4.8. uniq

With uniq you can remove duplicates from a sorted list.

student@linux:~/pipes$ cat music.txt
Queen
Brel
Queen
Abba
student@linux:~/pipes$ sort music.txt
Abba
Brel
Queen
Queen
student@linux:~/pipes$ sort music.txt |uniq
Abba
Brel
Queen

uniq can also count occurrences with the -c option.

student@linux:~/pipes$ sort music.txt |uniq -c
1 Abba
1 Brel
2 Queen

4.9. comm

Comparing streams (or files) can be done with the comm. By default comm will output three
columns. In this example, Abba, Cure and Queen are in both lists, Bowie and Sweet are only
in the first file, Turner is only in the second.

student@linux:~/pipes$ cat > list1.txt
Abba
Bowie
Cure
Queen

60

4.10. od

Sweet
student@linux:~/pipes$ cat > list2.txt
Abba
Cure
Queen
Turner
student@linux:~/pipes$ comm list1.txt list2.txt

Abba
Bowie

Cure
Queen

Sweet
Turner

The output of comm can be easier to read when outputting only a single column. The digits
point out which output columns should not be displayed.

student@linux:~/pipes$ comm -12 list1.txt list2.txt
Abba
Cure
Queen
student@linux:~/pipes$ comm -13 list1.txt list2.txt
Turner
student@linux:~/pipes$ comm -23 list1.txt list2.txt
Bowie
Sweet

4.10. od

European humans like to work with ascii characters, but computers store files in bytes. The
example below creates a simple file, and then uses od to show the contents of the file in
hexadecimal bytes

student@linux:~/test$ cat > text.txt
abcdefg
1234567
student@linux:~/test$ od -t x1 text.txt
0000000 61 62 63 64 65 66 67 0a 31 32 33 34 35 36 37 0a
0000020

The same file can also be displayed in octal bytes.

student@linux:~/test$ od -b text.txt
0000000 141 142 143 144 145 146 147 012 061 062 063 064 065 066 067 012
0000020

And here is the file in ascii (or backslashed) characters.

student@linux:~/test$ od -c text.txt
0000000 a b c d e f g \n 1 2 3 4 5 6 7 \n
0000020

61

4. filters

4.11. sed

The stream editor sed can perform editing functions in the stream, using regular expres-
sions.

student@linux:~/pipes$ echo level5 | sed 's/5/42/'
level42
student@linux:~/pipes$ echo level5 | sed 's/level/jump/'
jump5

Add g for global replacements (all occurrences of the string per line).

student@linux:~/pipes$ echo level5 level7 | sed 's/level/jump/'
jump5 level7
student@linux:~/pipes$ echo level5 level7 | sed 's/level/jump/g'
jump5 jump7

With d you can remove lines from a stream containing a character.

student@linux:~/test42$ cat tennis.txt
Venus Williams, USA
Martina Hingis, SUI
Justine Henin, BE
Serena williams, USA
Kim Clijsters, BE
Yanina Wickmayer, BE
student@linux:~/test42$ cat tennis.txt | sed '/BE/d'
Venus Williams, USA
Martina Hingis, SUI
Serena williams, USA

4.12. pipe examples

4.12.1. who | wc

Howmany users are logged on to this system ?

[student@linux pipes]$ who
root tty1 Jul 25 10:50
paul pts/0 Jul 25 09:29 (laika)
Harry pts/1 Jul 25 12:26 (barry)
paul pts/2 Jul 25 12:26 (pasha)
[student@linux pipes]$ who | wc -l
4

62

4.13. practice: filters

4.12.2. who | cut | sort

Display a sorted list of logged on users.

[student@linux pipes]$ who | cut -d' ' -f1 | sort
Harry
paul
paul
root

Display a sorted list of logged on users, but every user only once .

[student@linux pipes]$ who | cut -d' ' -f1 | sort | uniq
Harry
paul
root

4.12.3. grep | cut

Display a list of all bash user accounts on this computer. Users accounts are explained in
detail later.

student@linux:~$ grep bash /etc/passwd
root:x:0:0:root:/root:/bin/bash
paul:x:1000:1000:paul,,,:/home/paul:/bin/bash
serena:x:1001:1001^:/home/serena:/bin/bash
student@linux:~$ grep bash /etc/passwd | cut -d: -f1
root
paul
serena

4.13. practice: filters

1. Put a sorted list of all bash users in bashusers.txt.

2. Put a sorted list of all logged on users in onlineusers.txt.

3. Make a list of all filenames in /etc that contain the string conf in their filename.

4. Make a sorted list of all files in /etc that contain the case insensitive string conf in their
filename.

5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and the
subnet mask.

6. Write a line that removes all non-letters from a stream.

7. Write a line that receives a text file, and outputs all words on a separate line.

8. Write a spell checker on the command line. (Theremaybeadictionary in/usr/share/dict/
.)

63

4. filters

4.14. solution: filters

1. Put a sorted list of all bash users in bashusers.txt.

grep bash /etc/passwd | cut -d: -f1 | sort > bashusers.txt

2. Put a sorted list of all logged on users in onlineusers.txt.

who | cut -d' ' -f1 | sort > onlineusers.txt

3. Make a list of all filenames in /etc that contain the string conf in their filename.

ls /etc | grep conf

4. Make a sorted list of all files in /etc that contain the case insensitive string conf in their
filename.

ls /etc | grep -i conf | sort

5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and the
subnet mask.

/sbin/ifconfig | head -2 | grep 'inet ' | tr -s ' ' | cut -d' ' -f3,5

6. Write a line that removes all non-letters from a stream.

student@linux:~$ cat text
This is, yes really! , a text with ?&* too many str$ange# characters ;-)
student@linux:~$ cat text | tr -d ',!$^.*&^%#@;()-'
This is yes really a text with too many strange characters

7. Write a line that receives a text file, and outputs all words on a separate line.

student@linux:~$ cat text2
it is very cold today without the sun

student@linux:~$ cat text2 | tr ' ' '\n'
it
is
very
cold
today
without
the
sun

8. Write a spell checker on the command line. (Theremaybeadictionary in/usr/share/dict/
.)

64

4.14. solution: filters

student@linux ~$ echo "The zun is shining today" > text

student@linux ~$ cat > DICT
is
shining
sun
the
today

student@linux ~$ cat text | tr 'A-Z ' 'a-z\n' | sort | uniq | comm -23 - DICT
zun

You could also add the solution from question number 6 to remove non-letters, and tr -s
' ' to remove redundant spaces.

65

5. shell variables

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

In this chapter we learn to manage environment variables in the shell. These variables
are often needed by applications.

5.1. $ dollar sign

Another important character interpreted by the shell is the dollar sign $. The shell will look
for an environment variable named like the string following the dollar sign and replace
it with the value of the variable (or with nothing if the variable does not exist).

These are some examples using $HOSTNAME, $USER, $UID, $SHELL, and $HOME.

[student@linux ~]$ echo This is the $SHELL shell
This is the /bin/bash shell
[student@linux ~]$ echo This is $SHELL on computer $HOSTNAME
This is /bin/bash on computer RHELv8u3.localdomain
[student@linux ~]$ echo The userid of $USER is $UID
The userid of paul is 500
[student@linux ~]$ echo My homedir is $HOME
My homedir is /home/paul

5.2. case sensitive

This example shows that shell variables are case sensitive!

[student@linux ~]$ echo Hello $USER
Hello paul
[student@linux ~]$ echo Hello $user
Hello

5.3. creating variables

This example creates the variable $MyVar and sets its value. It then uses echo to verify the
value.

[student@linux gen]$ MyVar=555
[student@linux gen]$ echo $MyVar
555
[student@linux gen]$

67

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

5. shell variables

5.4. quotes

Notice that double quotes still allow the parsing of variables, whereas single quotes prevent
this.

[student@linux ~]$ MyVar=555
[student@linux ~]$ echo $MyVar
555
[student@linux ~]$ echo "$MyVar"
555
[student@linux ~]$ echo '$MyVar'
$MyVar

The bash shell will replace variables with their value in double quoted lines, but not in single
quoted lines.

student@linux:~$ city=Burtonville
student@linux:~$ echo "We are in $city today."
We are in Burtonville today.
student@linux:~$ echo 'We are in $city today.'
We are in $city today.

5.5. set

You can use the set command to display a list of environment variables. On Ubuntu and
Debian systems, the set command will also list shell functions after the shell variables. Use
set | more to see the variables then.

5.6. unset

Use the unset command to remove a variable from your shell environment.

[student@linux ~]$ MyVar=8472
[student@linux ~]$ echo $MyVar
8472
[student@linux ~]$ unset MyVar
[student@linux ~]$ echo $MyVar

[student@linux ~]$

5.7. $PS1

The $PS1 variable determines your shell prompt. You can use backslash escaped special
characters like \u for the username or \w for the working directory. The bashmanual has a
complete reference.

In this example we change the value of $PS1 a couple of times.

68

5.8. $PATH

student@linux:~$ PS1=prompt
prompt
promptPS1='prompt '
prompt
prompt PS1='> '
>
> PS1='\u@\h$ '
student@linux$
student@linux$ PS1='\u@\h:\W$'
student@linux:~$

To avoid unrecoverable mistakes, you can set normal user prompts to green and the root
prompt to red. Add the following to your .bashrc for a green user prompt:

color prompt by paul
RED='\[\033[01;31m\]'
WHITE='\[\033[01;00m\]'
GREEN='\[\033[01;32m\]'
BLUE='\[\033[01;34m\]'
export PS1="${debian_chroot:+($debian_chroot)}$GREEN\u$WHITE@$BLUE\h$WHITE\w\$ "

5.8. $PATH

The $PATH variable is determines where the shell is looking for commands to execute (unless
the command is builtin or aliased). This variable contains a list of directories, separated by
colons.

[[student@linux ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:

The shell will not look in the current directory for commands to execute! (Looking for exe-
cutables in the current directory provided an easy way to hack PC-DOS computers). If you
want the shell to look in the current directory, then add a . at the end of your $PATH.

[student@linux ~]$ PATH=$PATH:.
[student@linux ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:.
[student@linux ~]$

Your path might be different when using su instead of su - because the latter will take on
the environment of the target user. The root user typically has /sbin directories added to
the $PATH variable.

[student@linux ~]$ su
Password:
[root@linux paul^# echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
[root@linux paul^# exit
[student@linux ~]$ su -
Password:
[root@linux ~^# echo $PATH
/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:
[root@linux ~^#

69

5. shell variables

5.9. env

The env command without options will display a list of exported variables. The differ-
encewith setwith options is that set lists all variables, including those not exported to child
shells.

But env can also be used to start a clean shell (a shell without any inherited environment).
The env -i command clears the environment for the subshell.

Notice in this screenshot that bashwill set the $SHELL variable on startup.

[student@linux ~]$ bash -c 'echo $SHELL $HOME $USER'
/bin/bash /home/paul paul
[student@linux ~]$ env -i bash -c 'echo $SHELL $HOME $USER'
/bin/bash
[student@linux ~]$

You can use the env command to set the $LANG, or any other, variable for just one instance of
bash with one command. The example below uses this to show the influence of the $LANG
variable on file globbing (see the chapter on file globbing).

[student@linux test]$ env LANG=C bash -c 'ls File[a-z]'
Filea Fileb
[student@linux test]$ env LANG=en_US.UTF-8 bash -c 'ls File[a-z]'
Filea FileA Fileb FileB
[student@linux test]$

5.10. export

You can export shell variables to other shells with the export command. This will export the
variable to child shells.

[student@linux ~]$ var3=three
[student@linux ~]$ var4=four
[student@linux ~]$ export var4
[student@linux ~]$ echo $var3 $var4
three four
[student@linux ~]$ bash
[student@linux ~]$ echo $var3 $var4
four

But it will not export to the parent shell (previous screenshot continued).

[student@linux ~]$ export var5=five
[student@linux ~]$ echo $var3 $var4 $var5
four five
[student@linux ~]$ exit
exit
[student@linux ~]$ echo $var3 $var4 $var5
three four
[student@linux ~]$

70

5.11. delineate variables

5.11. delineate variables

Until now, wehave seen that bash interprets a variable starting fromadollar sign, continuing
until thefirst occurrenceof a non-alphanumeric character that is not anunderscore. In some
situations, this can be a problem. This issue can be resolved with curly braces like in this
example.

[student@linux ~]$ prefix=Super
[student@linux ~]$ echo Hello $prefixman and $prefixgirl
Hello and
[student@linux ~]$ echo Hello ${prefix}man and ${prefix}girl
Hello Superman and Supergirl
[student@linux ~]$

5.12. unbound variables

The example below tries to display the value of the $MyVar variable, but it fails because the
variable does not exist. By default the shell will display nothing when a variable is unbound
(does not exist).

[student@linux gen]$ echo $MyVar

[student@linux gen]$

There is, however, the nounset shell option that you can use to generate an error when a
variable does not exist.

student@linux:~$ set -u
student@linux:~$ echo $Myvar
bash: Myvar: unbound variable
student@linux:~$ set +u
student@linux:~$ echo $Myvar

student@linux:~$

In the bash shell set -u is identical to set -o nounset and likewise set +u is identical to
set +o nounset.

5.13. practice: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)

2. Create a variable answerwith a value of 42.
3. Copy the value of $LANG to $MyLANG.

4. List all current shell variables.

5. List all exported shell variables.

6. Do the env and set commands display your variable ?

6. Destroy your answer variable.
7. Create two variables, and export one of them.

71

5. shell variables

8. Display the exported variable in an interactive child shell.

9. Create a variable, give it the value ’Dumb’, create another variable with value ’do’. Use echo
and the two variables to echo Dumbledore.

10. Find the list of backslash escaped characters in themanual of bash. Add the time to your
PS1 prompt.

5.14. solution: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)

echo Hello $USER

2. Create a variable answerwith a value of 42.

answer=42

3. Copy the value of $LANG to $MyLANG.

MyLANG=$LANG

4. List all current shell variables.

set

set|more on Ubuntu/Debian

5. List all exported shell variables.

env
export
declare -x

6. Do the env and set commands display your variable ?

env | more
set | more

6. Destroy your answer variable.

unset answer

7. Create two variables, and export one of them.

var1=1; export var2=2

8. Display the exported variable in an interactive child shell.

bash
echo $var2

72

5.14. solution: shell variables

9. Create a variable, give it the value ’Dumb’, create another variable with value ’do’. Use echo
and the two variables to echo Dumbledore.

varx=Dumb; vary=do

echo ${varx}le${vary}re
solution by Yves from Dexia : echo $varx'le'$vary're'
solution by Erwin from Telenet : echo "$varx"le"$vary"re

10. Find the list of backslash escaped characters in themanual of bash. Add the time to your
PS1 prompt.

PS1='\t \u@\h \W$ '

73

6. introduction to scripting

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/, Bert Van Vreckem
https://github.com/bertvv/)

The goal of this chapter is to give you all the information in order to read, write and under-
stand small, long and complex shell scripts.

You should have read and understood part III shell expansion and part IV pipes and
commands before starting this chapter.

6.1. introduction

When you open a terminal and type a command, you are using a shell, an interactive en-
vironment that interprets your commands, executes them, and shows you the output the
command generates. Most Linux distributions have Bash (the “Bourne Again Shell”) as the
default, but there are others as well: the original “Bourne shell” (sh), the “Debian Amquist
Shell” (dash, a modern implementation of sh), the “Korn shell” (ksh), the “C shell” (csh), and
the “Z shell” (zsh), to name a few.

A sequence of commands can be saved in a file and executed as a single command. This
is called a script. Shell scripts are used to automate tasks, and are an essential tool for sys-
tem administrators and developers. Subsequently, this means that system administrators
or SysOps also need solid knowledge of scripting to understand how their servers and their
applications are started, updated, upgraded, patched,maintained, configured and removed,
and also to understand how a user environment is built.

Shells have also support for programming constructs (like loops, functions, variables, etc.) so
that you can write more complex scripts. This makes a scripting language basically as pow-
erful as a programming language. Scripting languages are often interpreted, rather than
compiled.

If you copy a script to one of the bin directories (e.g. /usr/local/bin), you can execute it
from the command line just like any other command. In fact, many UNIX/Linux commands
are essentially scripts. You can check this for yourself by executing the file command on
the executables in the /bin directory. For example:

student@linux:~$ file /usr/bin^* | awk '{ print($2, $3, $4) }' \
| sort | uniq -c | sort -nr
466 ELF 64-bit LSB
168 symbolic link to
74 POSIX shell script,
71 Perl script text
14 Python script, ASCII
10 setuid ELF 64-bit
7 setgid ELF 64-bit
6 Bourne-Again shell script,
2 Python script, Unicode
1 Python script, ISO-8859

75

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/bertvv/

6. introduction to scripting

We find POSIX (Bourne), Bash, Perl and Python scripts, as well as ELF binaries (compiled
programs). This shows that a significant portion of the commands in a typical Linux system
are actually scripts.

Bash scripting is a valuable skill for any Linux user, but these days, its applications are no
longer limited to Linux. Bash is also present onmacOS (albeit an older version), andwith the
advent of Windows Subsystem for Linux (WSL), Bash is now available for Windows users as
well. Moreover, Git Bash, a Bash shell for Windows, is also available.

6.2. hello world

Just like in every programming course, we start with a simple hello_world script. The fol-
lowing script will output Hello World.

1 echo Hello World

After creating this simple script innano, vi, orwithecho, you’ll have tochmod +x hello_world
to make it executable. And unless you add the scripts directory to your path, you’ll have to
type the path to the script for the shell to be able to find it.

student@linux:~$ echo echo Hello World > hello_world
student@linux:~$ chmod +x hello_world
student@linux:~$./hello_world
Hello World
student@linux:~$

6.3. she-bang

Let’s expand our example a little further by putting ^!/bin/bash on the first line of the script.
The ^! is called a she-bang (sometimes called sha-bang), where the she-bang is the first two
characters of the script.

Open the file with nano hello_world or vi hello_world and add the following line at the
top of the file.

1 ^!/bin/bash
2 echo Hello World

You cannever be surewhich (interactive) shell a user is running. A script thatworks flawlessly
in bashmight notwork in ksh, csh, or dash. To instruct a shell to run your scriptwith a specific
interpreter, you should start your script with a she-bang followed by the absolute path to the
executable of the interpreter.

This script will run in a bash shell.

1 ^!/bin/bash
2 echo -n hello
3 echo A bash subshell $(echo -n hello)

This script will be interpreted by Python:

1 ^!/usr/bin/env python3
2 print("Hello World!")

The following script will run in a Korn shell (unless /bin/ksh is a hard link to /bin/bash). The
/etc/shells file contains a list of shells available on your system. Check it to see which ones
are available to you

76

6.4. comments

1 ^!/bin/ksh
2 echo -n hello
3 echo a Korn subshell $(echo -n hello)

If you’re not sure in which bin directory the shell executable is located,you can use env. The
command env is normally used to print environment variables, but in the context of a script,
it is used to launch the correct interpreter.

1 ^!/usr/bin/env bash
2 echo -n hello
3 echo A bash subshell $(echo -n hello)

This is particularly useful for macOS users: out-of-the-box, a macOS system has a very old
version of bash in /bin/bash. If you want to use amore recent version, you can install it with
Homebrew, that will put it in /usr/local/bin/bash. If you use ^!/usr/bin/env bash in
your scripts, the newer version will be used.

6.4. comments

When writing Bash scripts, it is always a good practice to make your code clean and easily
understandable. Organizing your code in blocks, indenting, giving variables and functions
descriptive names are several ways to do this. Another way to improve the readability of your
code is byusing comments. A comment is a human-readable explanation or annotation that
is written in the shell script.

Let’s expand our example a little further by adding comment lines.

1 ^!/usr/bin/env bash
2 #
3 # hello_world.sh -- My first script
4 #
5 echo Hello World
6

7 # this is old way of calling for subshell with backtick ``
8 echo A bash subshell `echo -n hello`
9

10 # this is more modern way of calling for subshell with dollar and brackets
$()↪

11 echo A bash subshell $(echo -n hello)
12

13 #NOTICE: backtick might not work in future versions of bash shell

6.5. extension

A general convention is to give files an extension that indicates the file type. On a Linux sys-
tem, this is not strictly necessary. Remember that you can always use the file command to
determine the type of a file by scanning its contents. The systemwill not care if you call your
script hello_world.sh or hello_world. However, it is a good practice to use an extension,
as it makes it easier to identify the type of file.

We recommend to always give your scripts the .sh extension, but to remove the extension
when you install it in a bin directory as a command.

77

https://brew.sh

6. introduction to scripting

6.6. shell variables

Here is a simple example of a shell variable used inside a script.

1 ^!/bin/bash
2 # hello-user.sh -- example of a shell variable in a script
3 echo "Hello ${USER}"

In Bash, you can access the value of a variable by prefixing the variable namewith the $ sign.
The braces are not mandatory in this case, but they are a good practice to avoid ambiguity.
In some cases they are required, so it’s best to be consistent in your coding style.

The variable ${USER} is a shell variable that is defined by the system when you log in.

student@linux:~$ chmod +x hello-user.sh
student@linux:~$./hello-user.sh
Hello student

6.7. variable assignment

Assigning a variable is done by using the = operator. The variable name must start with a
letter or an underscore, and can contain only letters, digits, or underscores. Remark that
spaces are not allowed around the = sign!

1 ^!/bin/bash
2 # hello-var.sh -- example of variable assignment
3 user="Tux"
4

5 echo "Hello ${user}"

Because variable names are case-sensitive, this variable ${user} is different from ${USER}
in the previous example!

Tip: naming convention. You can use any name for a variable, but it is a good
practice to use all uppercase letters for environment variables (e.g. ${USER}) and
constants and all lowercase letters for local variables (e.g. ${user}). This is also
recommended by the Google Shell Style Guide. If a variable consists of multiple
words, use underscores to separate them (e.g. ${current_user}).

Running the script:

student@linux:~$ chmod +x hello-var.sh
student@linux:~$./hello-var.sh
Hello Tux

Scripts can contain variables, but since scripts are run in their own subshell, the variables do
not survive the end of the script.

student@linux:~$ echo $user

student@linux:~$./hello-var.sh
Hello Tux
student@linux:~$ echo $user

student@linux:~$

78

https://google.github.io/styleguide/shellguide.html#s7.2-variable-names

6.8. unbound variables

6.8. unbound variables

Remove the line user="Tux" from the script, or comment out the line and run it again. What
do youexpect tohappen if the variableuser is not assigned, butwe try touse it in the script?

student@linux:~$./hello-var.sh
Hello

Bash will not complain if you use a variable that is not assigned, but it will simply replace the
variable with an empty string. This can lead to unexpected results and is a common cause of
bugs that can be hard to find. However, you can change the behavior of the shell by starting
your scripts with the command set -o nounset (or shorter: set -u). This will cause the
script to exit with an error if you try to use an unassigned variable.

Add the line to the script, right below the comment lines and try again!

1 ^!/bin/bash
2 # hello-var.sh -- example of variable assignment
3

4 set -o nounset
5

6 echo "Hello ${user}"

Running the script:

student@linux:~$./hello-var.sh
./hello-var.sh: line 6: user: unbound variable

This is what you want to see. The script exits with an error, and you can see the line number
where the error occurred and which variable is unbound. Start all your scripts with set -o
nounset to prevent this kind of error!

6.9. sourcing a script

Luckily, you can force a script to run in the same shell; this is called sourcing a script.

student@linux:~$ source hello-var.sh
Hello Tux
student@linux:~$ echo $name
Tux

Instead of source, you can use the . (dot) command.

student@linux:~$. hello-var.sh
Hello Tux
student@linux:~$ echo $name
Tux

79

6. introduction to scripting

6.10. quoting

Go back to hello-user.sh and replace the double quotes with single quotes:

1 ^!/bin/bash
2 # hello-user.sh -- example of a shell variable in a script
3 echo 'Hello ${USER}'

Run the script again:

student@linux:~$./hello-user.sh
Hello ${USER}

What happened? By using single quotes, we turned off the shell’s variable expansion. The
shell will not replace ${USER}with the value of the USER variable. This is why you should use
double quotes when you want to use a variable.

Using quotes is important. Most of the times, when you reference the value of a variable, you
should enclose it in double quotes. To illustrate this, write the following script:

1 ^!/bin/bash
2 # create-file.sh -- example of using quotes
3 file="my file.txt"
4 touch $file

What we expect is that the script will create a file called my file.txt. However, when we
run the script:

student@linux:~$./create-file.sh
student@linux:~$ ls -l
total 4
-rwxr-xr-x 1 student student 88 Mar 6 16:20 create-file.sh
-rw-r--r-- 1 student student 0 Mar 6 16:20 file.txt
-rw-r--r-- 1 student student 0 Mar 6 16:20 my

So actually two files were created, one named my and the other file.txt. The reason has to
do with the way Bash interprets a command and how it substitutes variables. The line

1 touch $file

is expanded to

1 touch my file.txt

without the quotes. The touch command now sees two arguments, my and file.txt, and
creates two files. To fix this, you should always use double quotes:

1 ^!/bin/bash
2 # create-file.sh -- example of using quotes
3 file="my file.txt"
4 touch "${file}"

Now the expansion of the variable is done within the quotes, and the touch command sees
only one argument.

student@linux:~$./create-file.sh
student@linux:~$ ls -l
total 4
-rwxr-xr-x 1 student student 92 Mar 6 16:20 create-file.sh
-rw-r--r-- 1 student student 0 Mar 6 16:20 'my file.txt'

80

6.11. troubleshooting a script

6.11. troubleshooting a script

Another way to run a script in a separate shell is by typing bash with the name of the script
as a parameter. Expanding this to bash -x allows you to see the commands that the shell is
executing (after shell expansion).

Try this with the create-file.sh script! The incorrect version without the quotes:

$ bash -x create-file.sh
+ file='my file.txt'
+ touch my file.txt

Notice the absence of the commented (#) line, and the replacement of the variable in the
argument touch.

After the fix, you get:

$ bash -x create-file.sh
+ file='my file.txt'
+ touch 'my file.txt'

Do you notice the difference?

In longer scripts, this setting produces a lot of output, which may be hard to read. You can
limit the output to a specific problematic part of your script by using set -x and set +x to
turn the debugging on and off.

1 ^!/bin/bash
2 # create-file.sh -- example of using quotes
3 file="my file.txt"
4

5 set -x
6 touch "${file}"
7 set +x

6.12. Bash’s “strict mode”

Apart from the nounset shell option, there are two other options that are very useful for
debugging scripts: set -o errexit (or set -e) and set -o pipefail. The first option
causes the script to exit with an error if any command fails. The second option gives better
error messages when a command in a pipeline fails.

Start all your scripts with the following lines to prevent errors and to make debugging eas-
ier:

1 ^!/bin/bash --
2 set -o nounset
3 set -o errexit
4 set -o pipefail

This is called “strict mode” by some. You can write this shorter in one line as set -euo
pipefail, but this is less readable.

81

6. introduction to scripting

6.13. prevent setuid root spoofing

Some usermay try to perform setuid based script root spoofing. This is a rare but possible
attack. To improve script security and to avoid interpreter spoofing, you need to add ^- after
the ^!/bin/bash, which disables further option processing so the shell will not accept any
options.

1 ^!/usr/bin/env bash -
2 or
3 ^!/usr/bin/env bash --

Any arguments after the ^- are treated as filenames and arguments. An argument of - is
equivalent to ^-.

6.14. practice: introduction to scripting

1. Write a Python “Hello World” script, give it a shebang and make it executable. Execute
it like you would a shell script and verify that this works.

2. What would happen if you remove the shebang and try to execute the script again?

3. Create a Bash script greeting.sh that says hello to the user (make use of the shell
variablewith the current user’s login name), prints the current date and time, andprints
a quote, e.g.:

student@linux:~$./greeting.sh
Hello student, today is:
Wed Mar 6 09:04:19 PM UTC 2024
Quote of the day:

/ Having nothing, nothing can he lose. \
| |
\ -- William Shakespeare, "Henry VI" /

\ ^^_^
\ (oo)_______

(^_)\)\/\
^|----w |
^| ^|

Ensure that you apply the shell settings to make your script easier to debug.

4. Copy the script to /usr/local/binwithout the extension and verify that you can run it
from any directory as a command.

5. Take another look at the script hello-var.shwhere we printed a variable that was not
assigned:

1 ^!/bin/bash
2 # hello-var.sh -- example of variable assignment
3 # user="Tux" # Remark: this line is commented out
4

5 echo "Hello ${user}"

What happens if you assign the value Tux to the variable user on the interactive shell
and then run the script? What do we have to do to make sure the variable is available
in the script?

6. What if we change the value of the variable user in the script? Will this change affect
the value of the variable in the interactive shell after the script is finished?

82

6.15. solution: introduction to scripting

6.15. solution: introduction to scripting

1. Write a Python Hello World script, give it a shebang and make it executable.

1 ^!/usr/bin/python3
2 print("Hello, World!")

$ chmod +x hello.py
$./hello.py
Hello, World!

2. What would happen if you remove the shebang and try to execute the script again?

The script will be executed by the default interpreter, in this case, the Bash shell, which
will not understand the Python syntax.

$./hello.py
./hello.py: line 1: syntax error near unexpected token `"Hello world!"'
./hello.py: line 1: `print("Hello world!")'

3. Create a Bash script greeting.sh that says hello to the user (make use of the shell
variablewith the current user’s login name), prints the current date and time, andprints
a quote. Ensure that you apply the shell settings to make your script easier to debug.

1 ^! /bin/bash --
2

3 set -o nounset
4 set -o errexit
5 set -o pipefail
6

7 echo "Hello ${USER}, today is:"
8 date
9 echo "Quote of the day:"
10 fortune | cowsay

4. Copy the script to /usr/local/binwithout the extension and verify that you can run it
from any directory as a command.

student@linux:~$ sudo cp greeting.sh /usr/local/bin/greeting
student@linux:~$ greeting
Hello student, today is:
Wed Mar 6 09:17:00 PM UTC 2024
Quote of the day:

/ You plan things that you do not even \
| attempt because of your extreme |
\ caution. /

\ ^^_^
\ (oo)_______

(^_)\)\/\
^|----w |
^| ^|

student@linux:~$ cd /tmp
student@linux:/tmp$ greeting
Hello student, today is:
Wed Mar 6 09:17:08 PM UTC 2024
Quote of the day:

< You will be successful in love. >

83

6. introduction to scripting

\ ^^_^
\ (oo)_______

(^_)\)\/\
^|----w |
^| ^|

5. Take another look at the script hello-var.shwhere we printed a variable that was not
assigned. What happens if you assign the value Tux to the variable user on the interac-
tive shell and then run the script? What do we have to do to make sure the variable is
available in the script?

student@linux:~$./hello-var.sh
Hello
student@linux:~$ user=Tux
student@linux:~$./hello-var.sh
Hello
student@linux:~$ export user
student@linux:~$./hello-var.sh
Hello Tux

6. What if we change the value of the variable user in the script? Will this change affect
the value of the variable in the interactive shell after the script is finished?

We change the script to:

1 ^!/bin/bash
2 # hello-var.sh -- example of variable assignment
3 user="Linus"
4

5 echo "Hello ${user}"

And execute it:

student@linux:~$ export user=Tux
student@linux:~$ echo $user
Tux
student@linux:~$./hello-var.sh
Hello Linus
student@linux:~$ echo $user
Tux

The change in the script does not affect the value of the variable in the interactive shell
after the script is finished!

84

Part IV.

Organising users

85

7. standard file permissions

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/, Bert Van Vreckem,
https://github.com/bertvv/)

This chapter contains details about basic file security through file ownership and file permis-
sions.

7.1. file ownership

7.1.1. user owner and group owner

The users and groups of a system can be locally managed in /etc/passwd and /etc/group,
or they can be in a NIS, LDAP, or Samba domain. These users and groups can own files.
Actually, every file has a user owner and a group owner, as can be seen in the following
example.

student@linux:~/owners$ ls -lh
total 636K
-rw-r--r--. 1 student snooker 1.1K Apr 8 18:47 data.odt
-rw-r--r--. 1 student student 626K Apr 8 18:46 file1
-rw-r--r--. 1 student tennis 185 Apr 8 18:46 file2
-rw-rw-r--. 1 root root 0 Apr 8 18:47 stuff.txt

User student owns three files: file1 has student as user owner and has the group stu-
dent as group owner, data.odt is group owned by the group snooker, file2 by the group
tennis.

The last file is called stuff.txt and is owned by the root user and the root group.

7.1.2. chgrp

You can change the group owner of a file using the chgrp command. You must have root
privileges to do this.

root@linux:/home/student/owners# ls -l file2
-rw-r--r--. 1 root tennis 185 Apr 8 18:46 file2
root@linux:/home/student/owners# chgrp snooker file2
root@linux:/home/student/owners# ls -l file2
-rw-r--r--. 1 root snooker 185 Apr 8 18:46 file2
root@linux:/home/student/owners#

87

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/
https://github.com/bertvv/

7. standard file permissions

7.1.3. chown

The user owner of a file can be changed with chown command. You must have root privi-
leges to do this. In the following example, the user owner of file2 is changed from root to
student.

root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 root student 0 2008-08-06 14:11 FileForStudent
root@linux:/home/student# chown student FileForStudent
root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 student student 0 2008-08-06 14:11 FileForStudent

You can also use chown user:group to change both the user owner and the group owner.

root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 student student 0 2008-08-06 14:11 FileForStudent
root@linux:/home/student# chown root:project42 FileForStudent
root@linux:/home/student# ls -l FileForStudent
-rw-r--r-- 1 root project42 0 2008-08-06 14:11 FileForStudent

7.2. list of special files

When you use ls -l, for each file you can see ten characters before the user and group
owner. The first character tells us the type of file. Regular files get a -, directories get a d,
symbolic links are shown with an l, pipes get a p, character devices a c, block devices a b,
and sockets an s.

first character file type

- normal file
d directory
l symbolic link
p named pipe
b block device
c character device
s socket

Below an example of a character device (the console) and a block device (the hard disk).

student@linux:~$ ls -l /dev/console /dev/sda
crw--w---- 1 root tty 5, 1 Mar 8 08:32 /dev/console
brw-rw---- 1 root disk 8, 0 Mar 8 08:32 /dev/sda

And here you can see a directory, a regular file and a symbolic link.

student@linux:~$ ls -ld /etc /etc/hosts /etc/os-release
drwxr-xr-x 81 root root 4096 Mar 8 08:32 /etc
-rw-r--r-- 1 root root 186 Feb 26 14:58 /etc/hosts
lrwxrwxrwx 1 root root 21 Dec 9 21:08 /etc/os-release -> ^./usr/lib/os-
release

88

7.3. permissions

7.3. permissions

7.3.1. rwx

The nine characters following the file type denote the permissions in three triplets. A permis-
sion can be r for read access, w forwrite access, and x for execute. You need the r permission
to list (ls) the contents of a directory. You need the x permission to enter (cd) a directory. You
need the w permission to create files in or remove files from a directory.

permission on a file on a directory

read read file contents (cat) read directory contents (ls)
write change file contents create/delete files (touch,rm)

execute execute the file enter the directory (cd)

7.3.2. three sets of rwx

We already know that the output of ls -l starts with ten characters for each file. This exam-
ple shows a regular file (because the first character is a -).

student@linux:~/test$ ls -l proc42.sh
-rwxr-xr-- 1 student proj 984 Feb 6 12:01 proc42.sh

Below is a table describing the function of all ten characters.

position characters function

1 - file type
2-4 rwx permissions for the user owner
5-7 r-x permissions for the group owner
8-10 r-- permissions for others

When you are the user owner of a file, then the user owner permissions apply to you. The
rest of the permissions have no influence on your access to the file.

When you belong to the group that is the group owner of a file, then the group owner per-
missions apply to you. The rest of the permissions have no influence on your access to the
file.

When you are not the user owner of a file and you do not belong to the group owner, then
the others permissions apply to you. The rest of the permissions have no influence on your
access to the file.

7.3.3. permission examples

Some example combinations on files and directories are seen in this example. The name of
the file explains the permissions.

student@linux:~/perms$ ls -lh
total 12K
drwxr-xr-x 2 student student 4.0K 2007-02-07 22:26 AllEnter_UserCreateDelete
-rwxrwxrwx 1 student student 0 2007-02-07 22:21 EveryoneFullControl.txt
-r--r----- 1 student student 0 2007-02-07 22:21 OnlyOwnersRead.txt
-rwxrwx--- 1 student student 0 2007-02-07 22:21 OwnersAll_RestNothing.txt
dr-xr-x--- 2 student student 4.0K 2007-02-07 22:25 UserAndGroupEnter
dr-x------ 2 student student 4.0K 2007-02-07 22:25 OnlyUserEnter

89

7. standard file permissions

To summarise, the first rwx triplet represents the permissions for theuser owner. The second
triplet corresponds to thegroupowner; it specifiespermissions for allmembers of that group.
The third triplet defines permissions for all other users that are not the user owner and are
not amember of thegroupowner. The rootuser ignores all restrictions and cando anything
with any file.

7.3.4. setting permissions with symbolic notation

Permissions can be changed with chmod MODE FILE^^.. You need to be the owner of the
file to do this. The first example gives (+) the user owner (u) execute (x) permissions.

student@linux:~/perms$ ls -l permissions.txt
-rw-r--r-- 1 student student 0 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod u+x permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxr--r-- 1 student student 0 2007-02-07 22:34 permissions.txt

This example removes (-) the group owner’s (g) read (r) permission.

student@linux:~/perms$ chmod g-r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx---r-- 1 student student 0 2007-02-07 22:34 permissions.txt

This example removes (-) the other’s (o) read (r) permission.

student@linux:~/perms$ chmod o-r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx------ 1 student student 0 2007-02-07 22:34 permissions.txt

This example gives (+) all (a) of them the write (w) permission.

student@linux:~/perms$ chmod a+w permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx-w--w- 1 student student 0 2007-02-07 22:34 permissions.txt

You don’t even have to type the a.

student@linux:~/perms$ chmod +x permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwx-wx-wx 1 student student 0 2007-02-07 22:34 permissions.txt

You can also set explicit permissions with =.

student@linux:~/perms$ chmod u=rw permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rw--wx-wx 1 student student 0 2007-02-07 22:34 permissions.txt

Feel free to make any kind of combination, separating them with a comma. Remark that
spaces are not allowed!

student@linux:~/perms$ chmod u=rw,g=rw,o=r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rw-rw-r-- 1 student student 0 2007-02-07 22:34 permissions.txt

90

7.3. permissions

Even fishy combinations are accepted by chmod.

student@linux:~/perms$ chmod u=rwx,ug+rw,o=r permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxrw-r-- 1 student student 0 2007-02-07 22:34 permissions.txt

Summarized, in order to change permissions with chmod using symbolic notation:

• first specify who the permissions are for: u for the user owner, g for the group owner, o
for others, and a for all. a is the default and can be omitted.

• then specify the operation: + to add permissions, - to remove permissions, and = to set
permissions.

• finally specify the permission(s): r for read, w for write, and x for execute.
• multiple operations can be combined with a comma (no spaces!)

7.3.5. setting permissions with octal notation

Most Unix administrators will use the “old school” octal system to talk about and set permis-
sions. Consider the triplet to be a binary number with 0 indicating the permission is not set
and 1 indicating the permission is set. You then have 23 = 8 possible combinations, hence
the name octal. You can then convert the binary number to an octal number, equating r to
4, w to 2, and x to 1.

permission binary octal

--- 000 0
--x 001 1
-w- 010 2
-wx 011 3
r-- 100 4
r-x 101 5
rw- 110 6
rwx 111 7

Since we have three triplets, we can use three octal digits to represent the permissions. This
makes 777 equal to rwxrwxrwx and by the same logic, 654 mean rw-r-xr^-. The chmod
command will accept these numbers.

student@linux:~/perms$ chmod 777 permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxrwxrwx 1 student student 0 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod 664 permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rw-rw-r-- 1 student student 0 2007-02-07 22:34 permissions.txt
student@linux:~/perms$ chmod 750 permissions.txt
student@linux:~/perms$ ls -l permissions.txt
-rwxr-x--- 1 student student 0 2007-02-07 22:34 permissions.txt

Remark that in practice, some combinations will never occur:

• The permissions of a userwill never be smaller than the permissions of the group owner
or others. Consequently, the digits will always be in descending order.

• Setting the write or execute permission without read access is useless. Consequently,
you will never use 1, 2, or 3 in an octal permission code

91

7. standard file permissions

• A directory will always have the read and execute permission set or unset together. It
is useless to allow a user to read the directory contents, but not let them cd into that
directory. Allowing cd without read access is also useless. The permission code for a
directory will therefore always be odd.

Here’s a little tip: you can print the permissions of a file in either octal or symbolic notation
with the stat command (check the man page of stat to see how this works).

[student@linux ~]$ stat -c '%A %a' /etc/passwd
-rw-r--r-- 644
[student@linux ~]$ stat -c '%A %a' /etc/shadow
---------- 0
[student@linux ~]$ stat -c '%A %a' /bin/ls
-rwxr-xr-x 755

7.3.6. umask

When creating a file or directory, a set of default permissions are applied. These default
permissions are determined by the umask value. The umask specifies permissions that you
do not want set on by default. You can display the umaskwith the umask command.

[student@linux ~]$ umask
0002
[student@linux ~]$ touch test
[student@linux ~]$ ls -l test
-rw-rw-r-- 1 student student 0 Jul 24 06:03 test
[student@linux ~]$

As you can also see, the file is also not executable by default. This is a general security feature
among Unixes; newly created files are never executable by default. You have to explicitly do
a chmod +x to make a file executable. This also means that the 1 bit in the umask has no
meaning. A umask value of 0022 has the same effect as 0033.

In practice, you will only use umask values:

• 0: don’t take away any permissions
• 2: take away write permissions
• 7: take away all permissions

You can set the umask value to a new value with the umask command. The umask value is
a four-digit octal number. The first digit is for special permissions (and is always zero), the
second for the user permissions (is in practice always 0, since there is no use in taking away
the user’s permissions), the third for the group owner (sometimes 0, but usually 2 or 7), and
the last for others (usually 2 or 7, 0 is very uncommon and can be considered to be a security
risk).

The umask value is subtracted from 777 to get the default permissions and in the case of a
file, the execute bit is removed.

[student@linux ~]$ umask 0002
[student@linux ~]$ touch file0002
[student@linux ~]$ mkdir dir0002
[student@linux ~]$ ls -ld *0002
drwxrwxr-x. 2 student student 6 Mar 8 10:48 dir0002
-rw-rw-r--. 1 student student 0 Mar 8 10:47 file0002
[student@linux ~]$ umask 0027
[student@linux ~]$ touch file0027
[student@linux ~]$ mkdir dir0027

92

7.4. practice: standard file permissions

[student@linux ~]$ ls -ld *0027
drwxr-x---. 2 student student 6 Mar 8 10:48 dir0027
-rw-r-----. 1 student student 0 Mar 8 10:48 file0027
[student@linux ~]$ umask 0077
[student@linux ~]$ touch file0077
[student@linux ~]$ mkdir dir0077
[student@linux ~]$ ls -ld *0077
drwx------. 2 student student 6 Mar 8 10:51 dir0077
-rw-------. 1 student student 0 Mar 8 10:51 file0077

7.3.7. mkdir -m

Whencreatingdirectorieswith mkdir you canuse the -moption to set the mode. This example
explains.

student@linux~$ mkdir -m 700 MyDir
student@linux~$ mkdir -m 777 Public
student@linux~$ ls -dl MyDir/ Public/
drwx------ 2 student student 4096 2011-10-16 19:16 MyDir/
drwxrwxrwx 2 student student 4096 2011-10-16 19:16 Public/

7.3.8. cp -p

To preserve permissions and time stamps from source files, use cp -p.

student@linux:~/perms$ cp file* cp
student@linux:~/perms$ cp -p file* cpp
student@linux:~/perms$ ll *
-rwx------ 1 student student 0 2008-08-25 13:26 file33
-rwxr-x--- 1 student student 0 2008-08-25 13:26 file42

cp:
total 0
-rwx------ 1 student student 0 2008-08-25 13:34 file33
-rwxr-x--- 1 student student 0 2008-08-25 13:34 file42

cpp:
total 0
-rwx------ 1 student student 0 2008-08-25 13:26 file33
-rwxr-x--- 1 student student 0 2008-08-25 13:26 file42

7.4. practice: standard file permissions

1. As normal user, create a directory ~/permissions. Create a file owned by yourself in
there.

2. Copy a file owned by root from /etc/ to your permissions dir, who owns this file now ?

3. As root, create a file in the users ~/permissions directory.
4. As normal user, look at who owns this file created by root.

5. Change the ownership of all files in ~/permissions to yourself.

6. Delete the file created by root. Is this possible?

93

7. standard file permissions

7. With chmod, is 770 the same as rwxrwx^^-?
8. With chmod, is 664 the same as r-xr-xr^-?
9. With chmod, is 400 the same as r--------?
10. With chmod, is 734 the same as rwxr-xr^-?
11. Display the umask value in octal and in symbolic form.

12. Set the umask to 0077, but use the symbolic format to set it. Verify that this works.

13. Create a file as root, give only read to others. Can a normal user read this file? Test
writing to this file with vi or nano.

14. Create a file as a normal user, take away all permissions for the group owner and others.
Can you still read the file? Can root read the file? Can root write to the file?

15. Create a directory that belongs to group users, where everymember of that group can
read andwrite to files, and create files. Make sure that people can only delete their own
files.

7.5. solution: standard file permissions

1. As normal user, create a directory ~/permissions. Create a file owned by yourself in
there.

[student@linux ~]$ mkdir permissions
[student@linux ~]$ touch permissions/myfile.txt
[student@linux ~]$ ls -l permissions/
total 0
-rw-r--r--. 1 student student 0 Mar 8 10:59 myfile.txt

2. Copy a file owned by root from /etc/ to your permissions dir, who owns this file now ?

[student@linux ~]$ ls -l /etc/hosts
-rw-r--r--. 1 root root 174 Feb 26 15:05 /etc/hosts
[student@linux ~]$ cp /etc/hosts ~/permissions/
[student@linux ~]$ ls -l permissions/hosts
-rw-r--r--. 1 student student 174 Mar 8 11:00 permissions/hosts

The copy is owned by you.

3. As root, create a file in the users ~/permissions directory.

[student@linux ~]$ sudo touch permissions/rootfile.txt
[sudo] password for student:

4. As normal user, look at who owns this file created by root.

[student@linux ~]$ ls -l permissions^*.txt
-rw-r--r--. 1 student student 0 Mar 8 10:59 permissions/myfile.txt
-rw-r--r--. 1 root root 0 Mar 8 11:02 permissions/rootfile.txt

The file created by root is owned by root.

5. Change the ownership of all files in ~/permissions to yourself.

[student@linux ~]$ chown student ~/permissions^*
chown: changing ownership of '/home/student/permissions/rootfile.txt': Operation not permitted

You cannot become owner of the file that belongs to root. Root must change the own-
ership.

6. Delete the file created by root. Is this possible?

94

7.5. solution: standard file permissions

[student@linux ~]$ rm ~/permissions/rootfile.txt
rm: remove write-protected regular empty file '/home/student/permissions/rootfile.txt'? y
[student@linux ~]$ ls -l permissions^*.txt
-rw-r--r--. 1 student student 0 Mar 8 10:59 permissions/myfile.txt

You can delete the file since you have write permission on the directory!

7. With chmod, is 770 the same as rwxrwx^^-?

yes

8. With chmod, is 664 the same as r-xr-xr^-?

no, rw-rw-r^- is 664 and r-xr-xr^- is 774

9. With chmod, is 400 the same as r--------?

yes

10. With chmod, is 734 the same as rwxr-xr^-?

no, rwxr-xr^- is 754 and rwx-wxr^- is 734

11. Display the umask in octal and in symbolic form.

umask and umask -S

12. Set the umask to 0077, but use the symbolic format to set it. Verify that this works.

[student@linux ~]$ umask -S u=rwx,go=
u=rwx,g=,o=
[student@linux ~]$ umask
0077

13. Create a file as root, give only read to others. Can a normal user read this file? Test
writing to this file with vi or nano.

[student@linux ~]$ sudo vi permissions/rootfile.txt
[student@linux ~]$ sudo chmod 644 permissions/rootfile.txt
[student@linux ~]$ ls -l permissions^*.txt
-rw-r--r--. 1 student student 0 Mar 8 10:59 permissions/myfile.txt
-rw-r--r--. 1 root root 6 Mar 8 13:53 permissions/rootfile.txt
[student@linux ~]$ cat permissions/rootfile.txt
hello
[student@linux ~]$ echo " world" >> permissions/rootfile.txt
-bash: permissions/rootfile.txt: Permission denied

Yes, a normal user can read the file, but not write to it.

14. Create a file as a normal user, take away all permissions for the group and others. Can
you still read the file? Can root read the file? Can root write to the file?

[student@linux ~]$ vi permissions/privatefile.txt
^^. (editing the file) ^^.
[student@linux ~]$ cat permissions/privatefile.txt
hello
[student@linux ~]$ chmod 600 permissions/privatefile.txt
[student@linux ~]$ ls -l permissions/privatefile.txt
-rw-------. 1 student student 0 Mar 8 16:06 permissions/privatefile.txt
[student@linux ~]$ cat permissions/privatefile.txt
hello

Of course, the owner can still read (and write to) the file.

95

7. standard file permissions

[student@linux ~]$ sudo vi permissions/privatefile.txt
[sudo] password for student:
^^. (editing the file) ^^.
[student@linux ~]$ cat permissions/privatefile.txt
hello world

Root can read and write to the file. In fact, root ignores all file permissions and can do
anything with any file.

15. Create a directory shared/ that belongs to group users, where every member of that
group can read and write to files, and create files.

[student@linux ~]$ mkdir shared
[student@linux ~]$ sudo chgrp users shared
[student@linux ~]$ chmod 775 shared/
[student@linux ~]$ ls -ld shared/
drwxrwxr-x. 2 student users 6 Mar 8 18:26 shared/

96

8. advanced file permissions

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

8.1. sticky bit on directory

You can set the sticky bit on a directory to prevent users from removing files that they do
not own as a user owner. The sticky bit is displayed at the same location as the x permission
for others. The sticky bit is represented by a t (meaning x is also there) or a T (when there is
no x for others).

root@linux:~# mkdir /project55
root@linux:~# ls -ld /project55
drwxr-xr-x 2 root root 4096 Feb 7 17:38 /project55
root@linux:~# chmod +t /project55/
root@linux:~# ls -ld /project55
drwxr-xr-t 2 root root 4096 Feb 7 17:38 /project55
root@linux:~#

The sticky bit can also be set with octal permissions, it is binary 1 in the first of four
triplets.

root@linux:~# chmod 1775 /project55/
root@linux:~# ls -ld /project55
drwxrwxr-t 2 root root 4096 Feb 7 17:38 /project55
root@linux:~#

You will typically find the sticky bit on the /tmp directory.

root@linux:~# ls -ld /tmp
drwxrwxrwt 6 root root 4096 2009-06-04 19:02 /tmp

8.2. setgid bit on directory

setgid can be used on directories to make sure that all files inside the directory are owned
by the group owner of the directory. The setgid bit is displayed at the same location as the
x permission for group owner. The setgid bit is represented by an s (meaning x is also there)
or a S (when there is no x for the group owner). As this example shows, even though root
does not belong to the group proj55, the files created by root in /project55 will belong to
proj55 since the setgid is set.

97

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

8. advanced file permissions

root@linux:~# groupadd proj55
root@linux:~# chown root:proj55 /project55/
root@linux:~# chmod 2775 /project55/
root@linux:~# touch /project55/fromroot.txt
root@linux:~# ls -ld /project55/
drwxrwsr-x 2 root proj55 4096 Feb 7 17:45 /project55/
root@linux:~# ls -l /project55/
total 4
-rw-r--r-- 1 root proj55 0 Feb 7 17:45 fromroot.txt
root@linux:~#

You can use the find command to find all setgid directories.

student@linux:~$ find / -type d -perm -2000 2> /dev/null
/var/log/mysql
/var/log/news
/var/local
^^.

8.3. setgid and setuid on regular files

These two permissions cause an executable file to be executed with the permissions of the
file owner instead of the executing owner. Thismeans that if any user executes a program
that belongs to the root user, and the setuid bit is set on that program, then the program
runs as root. This can be dangerous, but sometimes this is good for security.

Take the example of passwords; they are stored in /etc/shadow which is only readable by
root. (The root user never needs permissions anyway.)

root@linux:~# ls -l /etc/shadow
-r-------- 1 root root 1260 Jan 21 07:49 /etc/shadow

Changing your password requires an update of this file, so how can normal non-root users
do this? Let’s take a look at the permissions on the /usr/bin/passwd.

root@linux:~# ls -l /usr/bin/passwd
-r-s--x--x 1 root root 21200 Jun 17 2005 /usr/bin/passwd

When running the passwd program, you are executing it with root credentials.
You can use the find command to find all setuid programs.

student@linux:~$ find /usr/bin -type f -perm -04000
/usr/bin/arping
/usr/bin/kgrantpty
/usr/bin/newgrp
/usr/bin/chfn
/usr/bin/sudo
/usr/bin/fping6
/usr/bin/passwd
/usr/bin/gpasswd
^^.

In most cases, setting the setuid bit on executables is sufficient. Setting the setgid bit will
result in these programs to run with the credentials of their group owner.

98

8.4. setuid on sudo

8.4. setuid on sudo

The sudo binary has the setuid bit set, so any user can run it with the effective userid of
root.

student@linux:~$ ls -l $(which sudo)
---s--x--x. 1 root root 123832 Oct 7 2013 /usr/bin/sudo
student@linux:~$

8.5. practice: sticky, setuid and setgid bits

1a. Set up a directory, owned by the group sports.

1b. Members of the sports group should be able to create files in this directory.

1c. All files created in this directory should be group-owned by the sports group.

1d. Users should be able to delete only their own user-owned files.

1e. Test that this works!

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing your
password as a normal user. Reset the permissions back and try again.

3. If time permits (or if you are waiting for other students to finish this practice), read about
file attributes in the man page of chattr and lsattr. Try setting the i attribute on a file and
test that it works.

8.6. solution: sticky, setuid and setgid bits

1a. Set up a directory, owned by the group sports.

groupadd sports

mkdir /home/sports

chown root:sports /home/sports

1b. Members of the sports group should be able to create files in this directory.

chmod 770 /home/sports

1c. All files created in this directory should be group-owned by the sports group.

chmod 2770 /home/sports

1d. Users should be able to delete only their own user-owned files.

chmod +t /home/sports

99

8. advanced file permissions

1e. Test that this works!

Log in with different users (groupmembers and others and root), create files and watch the
permissions. Try changing and deleting files...

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing your
password as a normal user. Reset the permissions back and try again.

root@linux:~# ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd
root@linux:~# chmod 755 /usr/bin/passwd
root@linux:~# ls -l /usr/bin/passwd
-rwxr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd

A normal user cannot change password now.

root@linux:~# chmod 4755 /usr/bin/passwd
root@linux:~# ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd

3. If time permits (or if you are waiting for other students to finish this practice), read about
file attributes in the man page of chattr and lsattr. Try setting the i attribute on a file and
test that it works.

student@linux:~$ sudo su -
[sudo] password for paul:
root@linux:~# mkdir attr
root@linux:~# cd attr/
root@linux:~/attr# touch file42
root@linux:~/attr# lsattr
------------------ ./file42
root@linux:~/attr# chattr +i file42
root@linux:~/attr# lsattr
----i------------- ./file42
root@linux:~/attr# rm -rf file42
rm: cannot remove `file42': Operation not permitted
root@linux:~/attr# chattr -i file42
root@linux:~/attr# rm -rf file42
root@linux:~/attr#

100

9. introduction to users

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This little chapter will teach you how to identify your user account on a Unix computer using
commands like who am i, id, and more.

In a second part you will learn how to become another user with the su command.

And you will learn how to run a program as another user with sudo.

9.1. whoami

The whoami command tells you your username.

[student@linux ~]$ whoami
paul
[student@linux ~]$

9.2. who

The who command will give you information about who is logged on the system.

[student@linux ~]$ who
root pts/0 2014-10-10 23:07 (10.104.33.101)
paul pts/1 2014-10-10 23:30 (10.104.33.101)
laura pts/2 2014-10-10 23:34 (10.104.33.96)
tania pts/3 2014-10-10 23:39 (10.104.33.91)
[student@linux ~]$

9.3. who am i

With who am i the who commandwill display only the line pointing to your current session.

[student@linux ~]$ who am i
paul pts/1 2014-10-10 23:30 (10.104.33.101)
[student@linux ~]$

101

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

9. introduction to users

9.4. w

The w command shows you who is logged on and what they are doing.

[student@linux ~]$ w
23:34:07 up 31 min, 2 users, load average: 0.00, 0.01, 0.02

USER TTY LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 23:07 15.00s 0.01s 0.01s top
paul pts/1 23:30 7.00s 0.00s 0.00s w
[student@linux ~]$

9.5. id

The id command will give you your user id, primary group id, and a list of the groups that
you belong to.

student@linux:~$ id
uid=1000(paul) gid=1000(paul) groups=1000(paul)

On RHEL/CentOS you will also get SELinux context information with this command.

[root@linux ~^# id
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r\
:unconfined_t:s0-s0:c0.c1023

9.6. su to another user

The su command allows a user to run a shell as another user.

laura@linux:~$ su tania
Password:
tania@linux:/home/laura$

9.7. su to root

Yes you can also su to become root, when you know the root password.

laura@linux:~$ su root
Password:
root@linux:/home/laura#

9.8. su as root

You need to know the password of the user youwant to substitute to, unless your are logged
in as root. The root user can become any existing user without knowing that user’s pass-
word.

root@linux:~# id
uid=0(root) gid=0(root) groups=0(root)
root@linux:~# su - valentina
valentina@linux:~$

102

9.9. su - $username

9.9. su - $username

By default, the su command maintains the same shell environment. To become another
user and also get the target user’s environment, issue the su - command followed by the
target username.

root@linux:~# su laura
laura@linux:/root$ exit
exit
root@linux:~# su - laura
laura@linux:~$ pwd
/home/laura

9.10. su -

When no username is provided to su or su -, the commandwill assume root is the target.

tania@linux:~$ su -
Password:
root@linux:~#

9.11. run a program as another user

The sudo program allows a user to start a program with the credentials of another user. Be-
fore this works, the system administrator has to set up the /etc/sudoers file. This can be
useful to delegate administrative tasks to another user (without giving the root password).

The screenshot below shows the usage of sudo. User paul received the right to run useradd
with the credentials of root. This allows paul to create new users on the system without
becoming root and without knowing the root password.
First the command fails for paul.

student@linux:~$ /usr/sbin/useradd -m valentina
useradd: Permission denied.
useradd: cannot lock /etc/passwd; try again later.

But with sudo it works.

student@linux:~$ sudo /usr/sbin/useradd -m valentina
[sudo] password for paul:
student@linux:~$

9.12. visudo

Check the man page of visudo before playing with the /etc/sudoers file. Editing the su-
doers is out of scope for this fundamentals book.

student@linux:~$ apropos visudo
visudo (8) - edit the sudoers file
student@linux:~$

103

9. introduction to users

9.13. sudo su -

On some Linux systems like Ubuntu and Xubuntu, the root user does not have a password
set. This means that it is not possible to login as root (extra security). To perform tasks as
root, the first user is given all sudo rights via the /etc/sudoers. In fact all users that are
members of the admin group can use sudo to run all commands as root.

root@linux:~# grep admin /etc/sudoers
Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

The end result of this is that the user can type sudo su - and become root without having to
enter the root password. The sudo command does require you to enter your own password.
Thus the password prompt in the screenshot below is for sudo, not for su.

student@linux:~$ sudo su -
Password:
root@linux:~#

9.14. sudo logging

Using sudowithout authorization will result in a severe warning:

student@linux:~$ sudo su -

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for paul:
paul is not in the sudoers file. This incident will be reported.
student@linux:~$

The root user can see this in the /var/log/secure on Red Hat and in /var/log/auth.log
on Debian).

root@linux:~# tail /var/log/secure | grep sudo | tr -s ' '
Apr 13 16:03:42 rhel65 sudo: paul : user NOT in sudoers ; TTY=pts/0 ; PWD=\
/home/paul ; USER=root ; COMMAND=/bin/su -
root@linux:~#

9.15. practice: introduction to users

1. Run a command that displays only your currently logged on user name.

2. Display a list of all logged on users.

3. Display a list of all logged on users including the command they are running at this very
moment.

4. Display your user name and your unique user identification (userid).

104

9.16. solution: introduction to users

5. Use su to switch to another user account (unless you are root, you will need the password
of the other account). And get back to the previous account.

6. Now use su - to switch to another user and notice the difference.

Note that su - gets you into the home directory of Tania.
7. Try to create a new user account (when using your normal user account). this should fail.
(Details on adding user accounts are explained in the next chapter.)

8. Now try the same, but with sudo before your command.

9.16. solution: introduction to users

1. Run a command that displays only your currently logged on user name.

laura@linux:~$ whoami
laura
laura@linux:~$ echo $USER
laura

2. Display a list of all logged on users.

laura@linux:~$ who
laura pts/0 2014-10-13 07:22 (10.104.33.101)
laura@linux:~$

3. Display a list of all logged on users including the command they are running at this very
moment.

laura@linux:~$ w
07:47:02 up 16 min, 2 users, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 10.104.33.101 07:30 6.00s 0.04s 0.00s w
root pts/1 10.104.33.101 07:46 6.00s 0.01s 0.00s sleep 42
laura@linux:~$

4. Display your user name and your unique user identification (userid).

laura@linux:~$ id
uid=1005(laura) gid=1007(laura) groups=1007(laura)
laura@linux:~$

5. Use su to switch to another user account (unless you are root, you will need the password
of the other account). And get back to the previous account.

laura@linux:~$ su tania
Password:
tania@linux:/home/laura$ id
uid=1006(tania) gid=1008(tania) groups=1008(tania)
tania@linux:/home/laura$ exit
laura@linux:~$

6. Now use su - to switch to another user and notice the difference.

105

9. introduction to users

laura@linux:~$ su - tania
Password:
tania@linux:~$ pwd
/home/tania
tania@linux:~$ logout
laura@linux:~$

Note that su - gets you into the home directory of Tania.
7. Try to create a new user account (when using your normal user account). this should fail.
(Details on adding user accounts are explained in the next chapter.)

laura@linux:~$ useradd valentina
-su: useradd: command not found
laura@linux:~$ /usr/sbin/useradd valentina
useradd: Permission denied.
useradd: cannot lock /etc/passwd; try again later.

It is possible that useradd is located in /sbin/useradd on your computer.

8. Now try the same, but with sudo before your command.

laura@linux:~$ sudo /usr/sbin/useradd valentina
[sudo] password for laura:
laura is not in the sudoers file. This incident will be reported.
laura@linux:~$

Notice that laura has no permission to use the sudo on this system.

106

10. user management

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This chapter will teach you how to use useradd, usermod and userdel to create, modify and
remove user accounts.

You will need root access on a Linux computer to complete this chapter.

10.1. user management

User management on Linux can be done in three complementary ways. You can use the
graphical tools provided by your distribution. These tools have a look and feel that depends
on the distribution. If you are a novice Linux user on your home system, then use the graph-
ical tool that is provided by your distribution. This will make sure that you do not run into
problems.

Another option is to use command line tools like useradd, usermod, gpasswd, passwd and
others. Server administrators are likely to use these tools, since they are familiar and very
similar across many different distributions. This chapter will focus on these command line
tools.

A third and rather extremist way is to edit the local configuration files directly using
vi (or vipw/vigr). Do not attempt this as a novice on production systems!

10.2. /etc/passwd

The local user database on Linux (and on most Unixes) is /etc/passwd.

[root@linux ~^# tail /etc/passwd
inge:x:518:524:art dealer:/home/inge:/bin/ksh
ann:x:519:525:flute player:/home/ann:/bin/bash
frederik:x:520:526:rubius poet:/home/frederik:/bin/bash
steven:x:521:527:roman emperor:/home/steven:/bin/bash
pascale:x:522:528:artist:/home/pascale:/bin/ksh
geert:x:524:530:kernel developer:/home/geert:/bin/bash
wim:x:525:531:master damuti:/home/wim:/bin/bash
sandra:x:526:532:radish stresser:/home/sandra:/bin/bash
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

As you can see, this file contains seven columns separated by a colon. The columns contain
the username, an x, the user id, the primary group id, a description, the name of the home
directory, and the login shell.

More information can be found by typing man 5 passwd.

[root@linux ~^# man 5 passwd

107

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

10. user management

10.3. root

The root user also called the superuser is themost powerful account on your Linux system.
This user can do almost anything, including the creation of other users. The root user always
has userid 0 (regardless of the name of the account).

[root@linux ~^# head -1 /etc/passwd
root:x:0:0:root:/root:/bin/bash

10.4. useradd

You can add users with the useradd command. The example below shows how to add a
user named yanina (last parameter) and at the same time forcing the creation of the home
directory (-m), setting the name of the home directory (-d), and setting a description (-c).

[root@linux ~^# useradd -m -d /home/yanina -c "yanina wickmayer" yanina
[root@linux ~^# tail -1 /etc/passwd
yanina:x:529:529:yanina wickmayer:/home/yanina:/bin/bash

The user named yanina received userid 529 and primary group id 529.

10.5. /etc/default/useradd

BothRedHat Enterprise Linux andDebian/Ubuntuhave afile called /etc/default/useradd
that contains some default user options. Besides using cat to display this file, you can also
use useradd -D.

[root@RHEL4 ~^# useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel

10.6. userdel

You can delete the user yanina with userdel. The -r option of userdel will also remove the
home directory.

[root@linux ~^# userdel -r yanina

108

10.7. usermod

10.7. usermod

You can modify the properties of a user with the usermod command. This example uses
usermod to change the description of the user harry.

[root@RHEL4 ~^# tail -1 /etc/passwd
harry:x:516:520:harry potter:/home/harry:/bin/bash
[root@RHEL4 ~^# usermod -c 'wizard' harry
[root@RHEL4 ~^# tail -1 /etc/passwd
harry:x:516:520:wizard:/home/harry:/bin/bash

10.8. creating home directories

The easiest way to create a home directory is to supply the -m option with useradd (it is likely
set as a default option on Linux).

A less easyway is to create a homedirectorymanually with mkdirwhich also requires setting
the owner and the permissions on the directory with chmod and chown (both commands are
discussed in detail in another chapter).

[root@linux ~^# mkdir /home/laura
[root@linux ~^# chown laura:laura /home/laura
[root@linux ~^# chmod 700 /home/laura
[root@linux ~^# ls -ld /home/laura/
drwx------ 2 laura laura 4096 Jun 24 15:17 /home/laura/

10.9. /etc/skel/

When using useradd the -m option, the /etc/skel/ directory is copied to the newly created
home directory. The /etc/skel/ directory contains some (usually hidden) files that contain
profile settings anddefault values for applications. In thisway /etc/skel/ serves as a default
home directory and as a default user profile.

[root@linux ~^# ls -la /etc/skel/
total 48
drwxr-xr-x 2 root root 4096 Apr 1 00:11 .
drwxr-xr-x 97 root root 12288 Jun 24 15:36 ^.
-rw-r--r-- 1 root root 24 Jul 12 2006 .bash_logout
-rw-r--r-- 1 root root 176 Jul 12 2006 .bash_profile
-rw-r--r-- 1 root root 124 Jul 12 2006 .bashrc

10.10. deleting home directories

The -r option of userdelwill make sure that the home directory is deleted together with the
user account.

[root@linux ~^# ls -ld /home/wim/
drwx------ 2 wim wim 4096 Jun 24 15:19 /home/wim/
[root@linux ~^# userdel -r wim
[root@linux ~^# ls -ld /home/wim/
ls: /home/wim/: No such file or directory

109

10. user management

10.11. login shell

The /etc/passwdfile specifies the login shell for theuser. In the screenshot belowyou can
see that user annelies will log in with the /bin/bash shell, and user laura with the /bin/ksh
shell.

[root@linux ~^# tail -2 /etc/passwd
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

You can use the usermod command to change the shell for a user.

[root@linux ~^# usermod -s /bin/bash laura
[root@linux ~^# tail -1 /etc/passwd
laura:x:528:534:art dealer:/home/laura:/bin/bash

10.12. chsh

Users can change their login shell with the chsh command. First, user harry obtains a list
of available shells (he could also have done a cat /etc/shells) and then changes his login
shell to the Korn shell (/bin/ksh). At the next login, harry will default into ksh instead of
bash.

[laura@linux ~]$ chsh -l
/bin/sh
/bin/bash
/sbin/nologin
/usr/bin/sh
/usr/bin/bash
/usr/sbin/nologin
/bin/ksh
/bin/tcsh
/bin/csh
[laura@linux ~]$

Note that the -l option does not exist on Debian and that the above screenshot assumes
that ksh and csh shells are installed.
The screenshot below shows how laura can change her default shell (active on next login).

[laura@linux ~]$ chsh -s /bin/ksh
Changing shell for laura.
Password:
Shell changed.

10.13. practice: user management

1. Create a user account named serena, including a home directory and a description (or
comment) that reads Serena Williams. Do all this in one single command.

2. Create a user named venus, including home directory, bash shell, a description that reads
Venus Williams all in one single command.

3. Verify that bothusershave correct entries in/etc/passwd, /etc/shadowand/etc/group.

110

10.14. solution: user management

4. Verify that their home directory was created.

5. Create a user named einstimewith /bin/date as his default logon shell.

6. What happens when you log on with the einstime user ? Can you think of a useful real
world example for changing a user’s login shell to an application ?

7. Create a file named welcome.txt and make sure every new user will see this file in their
home directory.

8. Verify this setup by creating (and deleting) a test user account.

9. Change the default login shell for the serena user to /bin/bash. Verify before and after
you make this change.

10.14. solution: user management

1. Create a user account named serena, including a home directory and a description (or
comment) that reads Serena Williams. Do all this in one single command.

root@linux:~# useradd -m -c 'Serena Williams' serena

2. Create a user named venus, including home directory, bash shell, a description that reads
Venus Williams all in one single command.

root@linux:~# useradd -m -c "Venus Williams" -s /bin/bash venus

3. Verify that bothusershave correct entries in/etc/passwd, /etc/shadowand/etc/group.

root@linux:~# tail -2 /etc/passwd
serena:x:1008:1010:Serena Williams:/home/serena:/bin/sh
venus:x:1009:1011:Venus Williams:/home/venus:/bin/bash
root@linux:~# tail -2 /etc/shadow
serena:!:16358:0:99999:7^^:
venus:!:16358:0:99999:7^^:
root@linux:~# tail -2 /etc/group
serena:x:1010:
venus:x:1011:

4. Verify that their home directory was created.

root@linux:~# ls -lrt /home | tail -2
drwxr-xr-x 2 serena serena 4096 Oct 15 10:50 serena
drwxr-xr-x 2 venus venus 4096 Oct 15 10:59 venus
root@linux:~#

5. Create a user named einstimewith /bin/date as his default logon shell.

root@linux:~# useradd -s /bin/date einstime

Or even better:

root@linux:~# useradd -s $(which date) einstime

6. What happens when you log on with the einstime user ? Can you think of a useful real
world example for changing a user’s login shell to an application ?

111

10. user management

root@linux:~# su - einstime
Wed Oct 15 11:05:56 UTC 2014 # You get the output of the date command
root@linux:~#

It can be useful whenusers need to access only one application on the server. Just logging in
opens the application for them, and closing the application automatically logs them out.

7. Create a file named welcome.txt and make sure every new user will see this file in their
home directory.

root@linux:~# echo Hello > /etc/skel/welcome.txt

8. Verify this setup by creating (and deleting) a test user account.

root@linux:~# useradd -m test
root@linux:~# ls -l /home/test
total 4
-rw-r--r-- 1 test test 6 Oct 15 11:16 welcome.txt
root@linux:~# userdel -r test
root@linux:~#

9. Change the default login shell for the serena user to /bin/bash. Verify before and after
you make this change.

root@linux:~# grep serena /etc/passwd
serena:x:1008:1010:Serena Williams:/home/serena:/bin/sh
root@linux:~# usermod -s /bin/bash serena
root@linux:~# grep serena /etc/passwd
serena:x:1008:1010:Serena Williams:/home/serena:/bin/bash
root@linux:~#

112

11. user passwords

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This chapter will tell you more about passwords for local users.

Three methods for setting passwords are explained; using the passwd command, using
openssel passwd, and using the crypt function in a C program.

The chapter will also discuss password settings and disabling, suspending or locking ac-
counts.

11.1. passwd

Passwords of users can be set with the passwd command. Users will have to provide their
old password before twice entering the new one.

[tania@linux ~]$ passwd
Changing password for user tania.
Changing password for tania.
(current) UNIX password:
New password:
BAD PASSWORD: The password is shorter than 8 characters
New password:
BAD PASSWORD: The password is a palindrome
New password:
BAD PASSWORD: The password is too similar to the old one
passwd: Have exhausted maximum number of retries for service

As you can see, the passwd tool will do some basic verification to prevent users from using
too simple passwords. The root user does not have to follow these rules (therewill be awarn-
ing though). The root user also does not have to provide the old password before entering
the new password twice.

root@linux:~# passwd tania
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

11.2. shadow file

User passwords are encrypted and kept in /etc/shadow. The /etc/shadow file is read only
and can only be read by root. We will see in the file permissions section how it is possible for
users to change their password. For now, you will have to know that users can change their
password with the /usr/bin/passwd command.

113

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

11. user passwords

[root@linux ~^# tail -4 /etc/shadow
paul:6ikp2Xta5BT.Tml.p$2TZjNnOYNNQKpwLJqoGJbVsZG5/Fti8ovBRd.VzRbiDSl7TEq\
IaSMH.TeBKnTS/SjlMruW8qffC0JNORW.BTW1:16338:0:99999:7^^:
tania:$6$8Z/zovxj$9qvoqT8i9KIrmN.k4EQwAF5ryz5yzNwEvYjAa9L5XVXQu.z4DlpvMREH\
eQpQzvRnqFdKkVj17H5ST.c79HDZw0:16356:0:99999:7^^:
laura:6glDuTY5e$/NYYWLxfHgZFWeoujaXSMcR.Mz.lGOxtcxFocFVJNb98nbTPhWFXfKWG\
SyYh1WCv6763Wq54.w24Yr3uAZBOm/:16356:0:99999:7^^:
valentina:6jrZa6PVI$1uQgqR6En9mZB6mKJ3LXRB4CnFko6LRhbh.v4iqUk9MVreui1lv7\
GxHOUDSKA0N55ZRNhGHa6T2ouFnVno/0o1:16356:0:99999:7^^:
[root@linux ~^#

The /etc/shadow file contains nine colon separated columns. The nine fields contain (from
left to right) the user name, the encrypted password (note that only inge and laura have an
encrypted password), the day the password was last changed (day 1 is January 1, 1970), num-
ber of days the password must be left unchanged, password expiry day, warning number of
days before password expiry, number of days after expiry before disabling the account, and
the day the account was disabled (again, since 1970). The last field has no meaning yet.

All the passwords in the screenshot above are hashes of hunter2.

11.3. encryption with passwd

Passwords are stored in an encrypted format. This encryption is done by the crypt func-
tion. The easiest (and recommended) way to add a user with a password to the system is to
add the user with the useradd -m user command, and then set the user’s password with
passwd.

[root@RHEL4 ~^# useradd -m xavier
[root@RHEL4 ~^# passwd xavier
Changing password for user xavier.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[root@RHEL4 ~^#

11.4. encryption with openssl

Another way to create users with a password is to use the -p option of useradd, but that
option requires an encrypted password. You can generate this encrypted passwordwith the
openssl passwd command.

The openssl passwd commandwill generate several distinct hashes for the same password,
for this it uses a salt.

student@linux:~$ openssl passwd hunter2
86jcUNlnGDFpY
student@linux:~$ openssl passwd hunter2
Yj7mDO9OAnvq6
student@linux:~$ openssl passwd hunter2
YqDcJeGoDbzKA
student@linux:~$

This salt can be chosen and is visible as the first two characters of the hash.

114

11.5. encryption with crypt

student@linux:~$ openssl passwd -salt 42 hunter2
42ZrbtP1Ze8G.
student@linux:~$ openssl passwd -salt 42 hunter2
42ZrbtP1Ze8G.
student@linux:~$ openssl passwd -salt 42 hunter2
42ZrbtP1Ze8G.
student@linux:~$

This example shows how to create a user with password.

root@linux:~# useradd -m -p $(openssl passwd hunter2) mohamed

Note that this command puts the password in your command history!

11.5. encryption with crypt

A third option is to create your own C program using the crypt function, and compile this
into a command.

student@linux:~$ cat MyCrypt.c
#include <stdio.h>
#define ^_USE_XOPEN
#include <unistd.h>

int main(int argc, char^* argv)
{
if(argc^=3)
{

printf("%s\n", crypt(argv[1],argv[2]));
}
else
{

printf("Usage: MyCrypt $password $salt\n");
}

return 0;
}

This little program can be compiled with gcc like this.

student@linux:~$ gcc MyCrypt.c -o MyCrypt -lcrypt

To use it, we need to give two parameters to MyCrypt. The first is the unencrypted password,
the second is the salt. The salt is used to perturb the encryption algorithm in one of 4096
different ways. This variation prevents two users with the same password from having the
same entry in /etc/shadow.

student@linux:~$./MyCrypt hunter2 42
42ZrbtP1Ze8G.
student@linux:~$./MyCrypt hunter2 33
33d6taYSiEUXI

Did you notice that the first two characters of the password are the salt?
The standard output of the crypt function is using the DES algorithm which is old and can
be cracked in minutes. A better method is to use md5 passwords which can be recognized
by a salt starting with 1.

115

11. user passwords

student@linux:~$./MyCrypt hunter2 '$1$42'
$1$42$7l6Y3xT5282XmZrtDOF9f0
student@linux:~$./MyCrypt hunter2 '$6$42'
$6$42$OqFFAVnI3gTSYG0yI9TZWX9cpyQzwIop7HwpG1LLEsNBiMr4w6OvLX1KDa./UpwXfrFk1i^^.

The md5 salt canbeup to eight characters long. The salt is displayed in /etc/shadowbetween
the second and third $, so never use the password as the salt!

student@linux:~$./MyCrypt hunter2 '1hunter2'
1hunter2$YVxrxDmidq7Xf8Gdt6qM2.

11.6. /etc/login.defs

The /etc/login.defs file contains some default settings for user passwords like password
aging and length settings. (You will also find the numerical limits of user ids and group ids
and whether or not a home directory should be created by default).

root@linux:~# grep ^PASS /etc/login.defs
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

Debian also has this file.

root@linux:~# grep PASS /etc/login.defs
PASS_MAX_DAYS Maximum number of days a password may be used.
PASS_MIN_DAYS Minimum number of days allowed between password changes.
PASS_WARN_AGE Number of days warning given before a password expires.
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_WARN_AGE 7
#PASS_CHANGE_TRIES
#PASS_ALWAYS_WARN
#PASS_MIN_LEN
#PASS_MAX_LEN
NO_PASSWORD_CONSOLE
root@linux:~#

11.7. chage

The chage command can be used to set an expiration date for a user account (-E), set a
minimum (-m) and maximum (-M) password age, a password expiration date, and set the
number of warning days before the password expiration date. Much of this functionality is
also available from the passwd command. The -l option of chage will list these settings for
a user.

root@linux:~# chage -l paul
Last password change : Mar 27, 2014
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0

116

11.8. disabling a password

Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
root@linux:~#

11.8. disabling a password

Passwords in /etc/shadow cannot begin with an exclamation mark. When the second field
in /etc/passwd starts with an exclamation mark, then the password can not be used.

Using this feature is often called locking, disabling, or suspending a user account. Besides
vi (or vipw) you can also accomplish this with usermod.
The first command in the next screenshot will show the hashed password of laura in
/etc/shadow. The next command disables the password of laura, making it impossible for
Laura to authenticate using this password.

root@linux:~# grep laura /etc/shadow | cut -c1-70
laura:6JYj4JZqp$stwwWACp3OtE1R2aZuE87j.nbW.puDkNUYVk7mCHfCVMa3CoDUJV
root@linux:~# usermod -L laura

As you can see below, the password hash is simply preceded with an exclamation mark.

root@linux:~# grep laura /etc/shadow | cut -c1-70
laura:!6JYj4JZqp$stwwWACp3OtE1R2aZuE87j.nbW.puDkNUYVk7mCHfCVMa3CoDUJ
root@linux:~#

The root user (and users with sudo rights on su) still will be able to su into the laura account
(because the password is not needed here). Also note that laura will still be able to login if
she has set up passwordless ssh!

root@linux:~# su - laura
laura@linux:~$

You can unlock the account again with usermod -U.

root@linux:~# usermod -U laura
root@linux:~# grep laura /etc/shadow | cut -c1-70
laura:6JYj4JZqp$stwwWACp3OtE1R2aZuE87j.nbW.puDkNUYVk7mCHfCVMa3CoDUJV

Watch out for tiny differences in the command line options of passwd, usermod, and useradd
on different Linux distributions. Verify the local files when using features like "disabling,
suspending, or locking" on user accounts and their passwords.

11.9. editing local files

If you still want tomanually edit the /etc/passwd or /etc/shadow, after knowing these com-
mands for passwordmanagement, then use vipw instead of vi(m) directly. The vipw tool will
do proper locking of the file.

[root@linux ~^# vipw /etc/passwd
vipw: the password file is busy (/etc/ptmp present)

117

11. user passwords

11.10. practice: user passwords

1. Set the password for serena to hunter2.

2. Also set a password for venus and then lock the venus user account with usermod. Verify
the locking in /etc/shadow before and after you lock it.

3. Use passwd -d to disable the serena password. Verify the serena line in /etc/shadow
before and after disabling.

4. What is the difference between locking a user account and disabling a user account’s
password like we just did with usermod -L and passwd -d?

5. Try changing the password of serena to serena as serena.

6. Make sure serena has to change her password in 10 days.

7. Make sure every new user needs to change their password every 10 days.

8. Take a backup as root of /etc/shadow. Use vi to copy an encrypted hunter2 hash from
venus to serena. Can serena now log on with hunter2 as a password ?

9. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

10. Use chsh to list all shells (only works on RHEL/CentOS/Fedora), and compare to cat
/etc/shells.

11. Which useradd option allows you to name a home directory ?

12. How can you see whether the password of user serena is locked or unlocked ? Give a
solution with grep and a solution with passwd.

11.11. solution: user passwords

1. Set the password for serena to hunter2.

root@linux:~# passwd serena
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

2. Also set a password for venus and then lock the venus user account with usermod. Verify
the locking in /etc/shadow before and after you lock it.

root@linux:~# passwd venus
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
root@linux:~# grep venus /etc/shadow | cut -c1-70
venus:6gswzXICW$uSnKFV1kFKZmTPaMVS4AvNA/KO27OxN0v5LHdV9ed0gTyXrjUeM/
root@linux:~# usermod -L venus
root@linux:~# grep venus /etc/shadow | cut -c1-70
venus:!6gswzXICW$uSnKFV1kFKZmTPaMVS4AvNA/KO27OxN0v5LHdV9ed0gTyXrjUeM

Note that usermod -L precedes the password hash with an exclamation mark (!).

3. Use passwd -d to disable the serena password. Verify the serena line in /etc/shadow
before and after disabling.

118

11.11. solution: user passwords

root@linux:~# grep serena /etc/shadow | cut -c1-70
serena:6Es/omrPE$F2Ypu8kpLrfKdW0v/UIwA5jrYyBD2nwZ/dt.i/IypRgiPZSdB/B
root@linux:~# passwd -d serena
passwd: password expiry information changed.
root@linux:~# grep serena /etc/shadow
serena^:16358:0:99999:7^^:
root@linux:~#

4. What is the difference between locking a user account and disabling a user account’s
password like we just did with usermod -L and passwd -d?
Locking will prevent the user from logging on to the system with his password by putting a
! in front of the password in /etc/shadow.
Disabling with passwdwill erase the password from /etc/shadow.
5. Try changing the password of serena to serena as serena.

log on as serena, then execute: passwd serena^^. it should fail!

6. Make sure serena has to change her password in 10 days.

chage -M 10 serena

7. Make sure every new user needs to change their password every 10 days.

vi /etc/login.defs (and change PASS_MAX_DAYS to 10)

8. Take a backup as root of /etc/shadow. Use vi to copy an encrypted hunter2 hash from
venus to serena. Can serena now log on with hunter2 as a password ?

Yes.

9. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

vipw will give a warning when someone else is already using that file (with vipw).

10. Use chsh to list all shells (only works on RHEL/CentOS/Fedora), and compare to cat
/etc/shells.

chsh -l
cat /etc/shells

11. Which useradd option allows you to name a home directory ?

-d

12. How can you see whether the password of user serena is locked or unlocked ? Give a
solution with grep and a solution with passwd.

grep serena /etc/shadow

passwd -S serena

119

12. User profiles

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Logged on users have a number of preset (and customized) aliases, variables, and functions,
but where do they come from ? The shell uses a number of startup files that are executed
(or rather sourced) whenever the shell is invoked. What follows is an overview of startup
scripts.

12.1. system profile

Both the bash and the ksh shell will verify the existence of /etc/profile and source it if it
exists.

When reading this script, you will notice (both on Debian and on Red Hat Enterprise Linux)
that it builds the PATH environment variable (among others). The script might also change
the PS1 variable, set the HOSTNAME and execute even more scripts like /etc/inputrc

This screenshot uses grep to show PATHmanipulation in /etc/profile on Debian.

root@linux:~# grep PATH /etc/profile
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
PATH="/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games"

export PATH
root@linux:~#

This screenshotusesgrep to showPATHmanipulation in/etc/profileonRHEL7/CentOS7.

[root@linux ~^# grep PATH /etc/profile
case ":${PATH}:" in

PATH=$PATH:$1
PATH=$1:$PATH

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL
[root@linux ~^#

The root user can use this script to set aliases, functions, and variables for every user on the
system.

12.2. ~/.bash_profile

When this file exists in the home directory, then bash will source it. On Debian Linux 5/6/7
this file does not exist by default.

RHEL7/CentOS7 uses a small ~/.bash_profile where it checks for the existence of
~/.bashrc and then sources it. It also adds $HOME/bin to the $PATH variable.

121

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

12. User profiles

[root@linux ~^# cat /home/paul/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH
[root@linux ~^#

12.3. ~/.bash_login

When .bash_profile does not exist, then bash will check for ~/.bash_login and source
it.

Neither Debian nor Red Hat have this file by default.

12.4. ~/.profile

Whenneither ~/.bash_profile and ~/.bash_login exist, thenbashwill verify the existence
of ~/.profile and execute it. This file does not exist by default on Red Hat.

On Debian this script can execute ~/.bashrc and will add $HOME/bin to the $PATH vari-
able.

root@linux:~# tail -11 /home/paul/.profile
if [-n "$BASH_VERSION"]; then

include .bashrc if it exists
if [-f "$HOME/.bashrc"]; then

. "$HOME/.bashrc"
fi

fi

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then

PATH="$HOME/bin:$PATH"
fi

RHEL/CentOS does not have this file by default.

12.5. ~/.bashrc

The ~/.bashrc script is often sourced by other scripts. Let us take a look at what it does by
default.

Red Hat uses a very simple ~/.bashrc, checking for /etc/bashrc and sourcing it. It also
leaves room for custom aliases and functions.

122

12.6. ~/.bash_logout

[root@linux ~^# cat /home/paul/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

Uncomment the following line if you don't like systemctl's auto-
paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

On Debian this script is quite a bit longer and configures $PS1, some history variables and a
number af active and inactive aliases.

root@linux:~# wc -l /home/paul/.bashrc
110 /home/paul/.bashrc

12.6. ~/.bash_logout

When exiting bash, it can execute ~/.bash_logout.
Debian use this opportunity to clear the console screen.

serena@linux:~$ cat .bash_logout
~/.bash_logout: executed by bash(1) when login shell exits.

when leaving the console clear the screen to increase privacy

if ["$SHLVL" = 1]; then
[-x /usr/bin/clear_console] ^& /usr/bin/clear_console -q

fi

Red Hat Enterprise Linux 5 will simple call the /usr/bin/clear command in this script.

[serena@linux ~]$ cat .bash_logout
~/.bash_logout

/usr/bin/clear

RedHat Enterprise Linux 6 and 7 create this file, but leave it empty (except for a comment).

student@linux:~$ cat .bash_logout
~/.bash_logout

12.7. Debian overview

Below is a table overview of when Debian is running any of these bash startup scripts.

123

12. User profiles

Table 12.1.: Debian User Environment
script su su - ssh gdm

~./bashrc no yes yes yes
~/.profile no yes yes yes
/etc/profile no yes yes yes
/etc/bash.bashrc yes no no yes

12.8. RHEL5 overview

Below is a table overview of when Red Hat Enterprise Linux 5 is running any of these bash
startup scripts.

Table 12.2.: Red Hat User Environment
script su su - ssh gdm

~./bashrc yes yes yes yes
~/.bash_profile no yes yes yes
/etc/profile no yes yes yes
/etc/bashrc yes yes yes yes

12.9. practice: user profiles

1. Make a list of all the profile files on your system.

2. Read the contents of each of these, often they source extra scripts.
3. Put a unique variable, alias and function in each of those files.

4. Try several different ways to obtain a shell (su, su -, ssh, tmux, gnome-terminal, Ctrl-alt-
F1, ...) and verify which of your custom variables, aliases and function are present in your
environment.

5. Do you also know the order in which they are executed?

6. When an application depends on a setting in $HOME/.profile, does it matter whether
$HOME/.bash_profile exists or not ?

12.10. solution: user profiles

1. Make a list of all the profile files on your system.

ls -a ~ ; ls -l /etc/pro* /etc/bash*

2. Read the contents of each of these, often they source extra scripts.
3. Put a unique variable, alias and function in each of those files.

4. Try several different ways to obtain a shell (su, su -, ssh, tmux, gnome-terminal, Ctrl-alt-
F1, ...) and verify which of your custom variables, aliases and function are present in your
environment.

5. Do you also know the order in which they are executed?

124

12.10. solution: user profiles

same name aliases, functions and variables will overwrite each other

6. When an application depends on a setting in $HOME/.profile, does it matter whether
$HOME/.bash_profile exists or not ?

Yes it does matter. (man bash /INVOCATION)

125

13. groups

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Users can be listed in groups. Groups allow you to set permissions on the group level instead
of having to set permissions for every individual user.

Every Unix or Linux distribution will have a graphical tool to manage groups. Novice users
are advised to use this graphical tool. More experienced users can use command line tools
to manage users, but be careful: Some distributions do not allow the mixed use of GUI and
CLI tools tomanage groups (YaST in Novell Suse). Senior administrators can edit the relevant
files directly with vi or vigr.

13.1. groupadd

Groups canbe createdwith the groupadd command. The example below shows the creation
of five (empty) groups.

root@linux:~# groupadd tennis
root@linux:~# groupadd football
root@linux:~# groupadd snooker
root@linux:~# groupadd formula1
root@linux:~# groupadd salsa

13.2. group file

Users can be amember of several groups. Groupmembership is defined by the /etc/group
file.

root@linux:~# tail -5 /etc/group
tennis:x:1006:
football:x:1007:
snooker:x:1008:
formula1:x:1009:
salsa:x:1010:
root@linux:~#

The first field is the group’s name. The second field is the group’s (encrypted) password (can
be empty). The third field is the group identification or GID. The fourth field is the list of
members, these groups have no members.

127

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

13. groups

13.3. groups

A user can type the groups command to see a list of groups where the user belongs to.

[harry@linux ~]$ groups
harry sports
[harry@linux ~]$

13.4. usermod

Group membership can be modified with the useradd or usermod command.

root@linux:~# usermod -a -G tennis inge
root@linux:~# usermod -a -G tennis katrien
root@linux:~# usermod -a -G salsa katrien
root@linux:~# usermod -a -G snooker sandra
root@linux:~# usermod -a -G formula1 annelies
root@linux:~# tail -5 /etc/group
tennis:x:1006:inge,katrien
football:x:1007:
snooker:x:1008:sandra
formula1:x:1009:annelies
salsa:x:1010:katrien
root@linux:~#

Be careful when using usermod to add users to groups. By default, the usermod command
will remove the user from every group of which he is a member if the group is not listed in
the command! Using the -a (append) switch prevents this behaviour.

13.5. groupmod

You can change the group name with the groupmod command.

root@linux:~# groupmod -n darts snooker
root@linux:~# tail -5 /etc/group
tennis:x:1006:inge,katrien
football:x:1007:
formula1:x:1009:annelies
salsa:x:1010:katrien
darts:x:1008:sandra

13.6. groupdel

You can permanently remove a group with the groupdel command.

root@linux:~# groupdel tennis
root@linux:~#

128

13.7. gpasswd

13.7. gpasswd

You can delegate control of groupmembership to another user with the gpasswd command.
In the examplebelowwedelegatepermissions to addand removegroupmembers to serena
for the sports group. Then we su to serena and add harry to the sports group.

[root@linux ~^# gpasswd -A serena sports
[root@linux ~^# su - serena
[serena@linux ~]$ id harry
uid=516(harry) gid=520(harry) groups=520(harry)
[serena@linux ~]$ gpasswd -a harry sports
Adding user harry to group sports
[serena@linux ~]$ id harry
uid=516(harry) gid=520(harry) groups=520(harry),522(sports)
[serena@linux ~]$ tail -1 /etc/group
sports:x:522:serena,venus,harry
[serena@linux ~]$

Group administrators do not have to be a member of the group. They can remove them-
selves from a group, but this does not influence their ability to add or remove members.

[serena@linux ~]$ gpasswd -d serena sports
Removing user serena from group sports
[serena@linux ~]$ exit

Information about group administrators is kept in the /etc/gshadow file.

[root@linux ~^# tail -1 /etc/gshadow
sports:!:serena:venus,harry
[root@linux ~^#

To remove all group administrators fromagroup, use the gpasswd command to set an empty
administrators list.

[root@linux ~^# gpasswd -A "" sports

13.8. newgrp

You can start a child shell with a new temporary primary group using the newgrp com-
mand.

root@linux:~# mkdir prigroup
root@linux:~# cd prigroup/
root@linux:~/prigroup# touch standard.txt
root@linux:~/prigroup# ls -l
total 0
-rw-r--r--. 1 root root 0 Apr 13 17:49 standard.txt
root@linux:~/prigroup# echo $SHLVL
1
root@linux:~/prigroup# newgrp tennis
root@linux:~/prigroup# echo $SHLVL
2
root@linux:~/prigroup# touch newgrp.txt
root@linux:~/prigroup# ls -l

129

13. groups

total 0
-rw-r--r--. 1 root tennis 0 Apr 13 17:49 newgrp.txt
-rw-r--r--. 1 root root 0 Apr 13 17:49 standard.txt
root@linux:~/prigroup# exit
exit
root@linux:~/prigroup#

13.9. vigr

Similar to vipw, the vigr command can be used to manually edit the /etc/group file, since
it will do proper locking of the file. Only experienced senior administrators should use vi or
vigr to manage groups.

13.10. practice: groups

1. Create the groups tennis, football and sports.

2. In one command, make venus a member of tennis and sports.

3. Rename the football group to foot.

4. Use vi to add serena to the tennis group.

5. Use the id command to verify that serena is a member of tennis.

6. Make someone responsible formanaging groupmembership of foot and sports. Test that
it works.

13.11. solution: groups

1. Create the groups tennis, football and sports.

groupadd tennis ; groupadd football ; groupadd sports

2. In one command, make venus a member of tennis and sports.

usermod -a -G tennis,sports venus

3. Rename the football group to foot.

groupmod -n foot football

4. Use vi to add serena to the tennis group.

vi /etc/group

5. Use the id command to verify that serena is a member of tennis.

id (and after logoff logon serena should be member)

6. Make someone responsible formanaging groupmembership of foot and sports. Test that
it works.

130

13.11. solution: groups

gpasswd -A (to make manager)

gpasswd -a (to add member)

131

Part V.

Webserver; scripting 102

133

14. apache web server

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Hans Roes, https://github.com/Blokker-1999/, Alex M. Schapelle, https://gith
ub.com/zero-pytagoras/)

In this chapter we learn how to setup a web server with the apache software.
According to NetCraft (http://news.netcraft.com/archives/web_server_survey.html) about
seventy percent of all web servers are running on Apache. The name is derived from a
patchyweb server, because of all the patches people wrote for the NCSA httpd server.

Later chapters will expand this web server into a LAMP stack (Linux, Apache, Mysql,
Perl/PHP/Python).

14.1. introduction to apache

14.1.1. installing on Debian

This screenshot shows that there is no apache server installed, nor does the /var/^^w direc-
tory exist.

root@linux:~# ls -l /var/^^w
ls: cannot access /var/^^w: No such file or directory
root@linux:~# dpkg -l | grep apache

To install apache on Debian:

root@linux:~# aptitude install apache2
The following NEW packages will be installed:

apache2 apache2-mpm-worker{a} apache2-utils{a} apache2.2-bin{a} apache2.2-
com\
mon{a} libapr1{a} libaprutil1{a} libaprutil1-dbd-sqlite3{a} libaprutil1-
ldap{a}\
ssl-cert{a}

0 packages upgraded, 10 newly installed, 0 to remove and 0 not upgraded.
Need to get 1,487 kB of archives. After unpacking 5,673 kB will be used.
Do you want to continue? [Y/n/?]

After installation, the same two commands as above will yield a different result:

root@linux:~# ls -l /var/^^w
total 4
-rw-r--r-- 1 root root 177 Apr 29 11:55 index.html
root@linux:~# dpkg -l | grep apache | tr -s ' '
ii apache2 2.2.22-13+deb7u1 amd64 Apache HTTP Server metapackage
ii apache2-mpm-worker 2.2.22-13+deb7u1 amd64 Apache HTTP Server - high speed th\
readed model
ii apache2-utils 2.2.22-13+deb7u1 amd64 utility programs for webservers
ii apache2.2-bin 2.2.22-13+deb7u1 amd64 Apache HTTP Server common binary files
ii apache2.2-common 2.2.22-13+deb7u1 amd64 Apache HTTP Server common files

135

https://github.com/paulcobbaut/
https://github.com/Blokker-1999/
https://github.com/zero-pytagoras/
https://github.com/zero-pytagoras/

14. apache web server

14.1.2. installing on RHEL/CentOS

Note that Red Hat derived distributions use httpd as package and process name instead of
apache.
To verify whether apache is installed in CentOS/RHEL:

[root@linux ~^# rpm -q httpd
package httpd is not installed
[root@linux ~^# ls -l /var/^^w
ls: cannot access /var/^^w: No such file or directory

To install apache on CentOS:

[root@linux ~^# yum install httpd

After running the yum install httpd command, the Centos 6.5 server has apache installed
and the /var/^^w directory exists.

[root@linux ~^# rpm -q httpd
httpd-2.2.15-30.el6.centos.x86_64
[root@linux ~^# ls -l /var/^^w
total 16
drwxr-xr-x. 2 root root 4096 Apr 3 23:57 cgi-bin
drwxr-xr-x. 3 root root 4096 May 6 13:08 error
drwxr-xr-x. 2 root root 4096 Apr 3 23:57 html
drwxr-xr-x. 3 root root 4096 May 6 13:08 icons
[root@linux ~^#

14.1.3. running apache on Debian

This is how you start apache2 on Debian.

root@linux:~# service apache2 status
Apache2 is NOT running.
root@linux:~# service apache2 start
Starting web server: apache2apache2: Could not reliably determine the server's \
fully qualified domain name, using 127.0.1.1 for ServerName
.

To verify, run the service apache2 status command again or use ps.

root@linux:~# service apache2 status
Apache2 is running (pid 3680).
root@linux:~# ps -C apache2

PID TTY TIME CMD
3680 ? 00:00:00 apache2
3683 ? 00:00:00 apache2
3684 ? 00:00:00 apache2
3685 ? 00:00:00 apache2

root@linux:~#

Or use wget and file to verify that your web server serves an html document.

136

14.1. introduction to apache

root@linux:~# wget 127.0.0.1
--2014-05-06 13:27:02-- http:^/127.0.0.1/
Connecting to 127.0.0.1:80^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 177 [text/html]
Saving to: `index.html'

100%[==>] 177 --.-
K/s in 0s

2014-05-06 13:27:02 (15.8 MB/s) - `index.html' saved [177/177]

root@linux:~# file index.html
index.html: HTML document, ASCII text
root@linux:~#

Or verify that apache is running by opening a web browser, and browse to the ip-address of
your server. An Apache test page should be shown.

You cando the following to quickly avoid the ’could not reliably determine the fqdn’message
when restarting apache.

root@linux:~# echo ServerName debian10 >> /etc/apache2/apache2.conf
root@linux:~# service apache2 restart
Restarting web server: apache2 ^^. waiting .
root@linux:~#

14.1.4. running apache on CentOS

Starting the httpd on RHEL/CentOS is done with the service command.

[root@linux ~^# service httpd status
httpd is stopped
[root@linux ~^# service httpd start
Starting httpd: httpd: Could not reliably determine the server's fully qualifie\
d domain name, using 127.0.0.1 for ServerName

[OK]
[root@linux ~^#

To verify that apache is running, use ps or issue the service httpd status command
again.

[root@linux ~^# service httpd status
httpd (pid 2410) is running^^.
[root@linux ~^# ps -C httpd

PID TTY TIME CMD
2410 ? 00:00:00 httpd
2412 ? 00:00:00 httpd
2413 ? 00:00:00 httpd
2414 ? 00:00:00 httpd
2415 ? 00:00:00 httpd
2416 ? 00:00:00 httpd
2417 ? 00:00:00 httpd
2418 ? 00:00:00 httpd
2419 ? 00:00:00 httpd

[root@linux ~^#

137

14. apache web server

To prevent the ’Could not reliably determine the fqdn’ message, issue the following com-
mand.

[root@linux ~^# echo ServerName Centos65 >> /etc/httpd/conf/httpd.conf
[root@linux ~^# service httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]
[root@linux ~^#

14.1.5. index file on CentOS

CentOS does not provide a standard index.html or index.php file. A simple wget gives an
error.

[root@linux ~^# wget 127.0.0.1
--2014-05-06 15:10:22-- http:^/127.0.0.1/
Connecting to 127.0.0.1:80^^. connected.
HTTP request sent, awaiting response^^. 403 Forbidden
2014-05-06 15:10:22 ERROR 403: Forbidden.

Insteadwhen visiting the ip-address of your server in aweb browser you get a noindex.html
page. You can verify this using wget.

[root@linux ~^# wget http:^/127.0.0.1/error/noindex.html
--2014-05-06 15:16:05-- http:^/127.0.0.1/error/noindex.html
Connecting to 127.0.0.1:80^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 5039 (4.9K) [text/html]
Saving to: “noindex.html”

100%[===>] 5,039 --.-K/s in 0s

2014-05-06 15:16:05 (289 MB/s) - “noindex.html” saved [5039/5039]

[root@linux ~^# file noindex.html
noindex.html: HTML document text
[root@linux ~^#

Any custom index.html file in /var/^^w/html will immediately serve as an index for this
web server.

[root@linux ~^# echo 'Welcome to my website' > /var/^^w/html/index.html
[root@linux ~^# wget http:^/127.0.0.1
--2014-05-06 15:19:16-- http:^/127.0.0.1/
Connecting to 127.0.0.1:80^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 22 [text/html]
Saving to: “index.html”

100%[===>] 22 --.-K/s in 0s

2014-05-06 15:19:16 (1.95 MB/s) - “index.html” saved [22/22]

[root@linux ~^# cat index.html
Welcome to my website

138

14.1. introduction to apache

14.1.6. default website

Changing the default website of a freshly installed apache web server is easy. All you need
to do is create (or change) an index.html file in the DocumentRoot directory.

To locate the DocumentRoot directory on Debian:

root@linux:~# grep DocumentRoot /etc/apache2/sites-available/default
DocumentRoot /var/^^w

This means that /var/^^w/index.html is the default web site.

root@linux:~# cat /var/^^w/index.html
<html><body><h1>It works!^/h1>
<p>This is the default web page for this server.^/p>
<p>The web server software is running but no content has been added, yet.^/p>
^/body>^/html>
root@linux:~#

This screenshot shows how to locate the DocumentRoot directory on RHEL/CentOS.

[root@linux ~^# grep ^DocumentRoot /etc/httpd/conf/httpd.conf
DocumentRoot "/var/^^w/html"

RHEL/CentOS have no default web page (only the noindex.html error page mentioned be-
fore). But an index.html file created in /var/^^w/html/ will automatically be used as de-
fault page.

[root@linux ~^# echo '<html><head><title>Default website^/title>^/head><body\
><p>A new web page^/p>^/body>^/html>' > /var/^^w/html/index.html
[root@linux ~^# cat /var/^^w/html/index.html
<html><head><title>Default website^/title>^/head><body><p>A new web page^/p>^/b\
ody>^/html>
[root@linux ~^#

14.1.7. apache configuration

There are many similarities, but also a couple of differences when configuring apache on
Debian or on CentOS. Both Linux families will get their own chapters with examples.

All configuration on RHEL/CentOS is done in /etc/httpd.

[root@linux ~^# ls -l /etc/httpd/
total 8
drwxr-xr-x. 2 root root 4096 May 6 13:08 conf
drwxr-xr-x. 2 root root 4096 May 6 13:08 conf.d
lrwxrwxrwx. 1 root root 19 May 6 13:08 logs -> ^./^./var/log/httpd
lrwxrwxrwx. 1 root root 29 May 6 13:08 modules -> ^./^./usr/lib64/httpd/modu\
les
lrwxrwxrwx. 1 root root 19 May 6 13:08 run -> ^./^./var/run/httpd
[root@linux ~^#

Debian (and ubuntu/mint/...) use /etc/apache2.

139

14. apache web server

root@linux:~# ls -l /etc/apache2/
total 72
-rw-r--r-- 1 root root 9659 May 6 14:23 apache2.conf
drwxr-xr-x 2 root root 4096 May 6 13:19 conf.d
-rw-r--r-- 1 root root 1465 Jan 31 18:35 envvars
-rw-r--r-- 1 root root 31063 Jul 20 2013 magic
drwxr-xr-x 2 root root 4096 May 6 13:19 mods-available
drwxr-xr-x 2 root root 4096 May 6 13:19 mods-enabled
-rw-r--r-- 1 root root 750 Jan 26 12:13 ports.conf
drwxr-xr-x 2 root root 4096 May 6 13:19 sites-available
drwxr-xr-x 2 root root 4096 May 6 13:19 sites-enabled
root@linux:~#

14.2. port virtual hosts on Debian

14.2.1. default virtual host

Debian has a virtualhost configuration file for its default website in /etc/apache2/sites-
available/default.

root@linux:~# head -2 /etc/apache2/sites-available/default
<VirtualHost *:80>

ServerAdmin webmaster@localhost

14.2.2. three extra virtual hosts

In this scenario we create three additional websites for three customers that share a club-
house and want to jointly hire you. They are a model train club named Choo Choo, a chess
club named Chess Club 42 and a hackerspace named hunter2.
One way to put three websites on one web server, is to put each website on a different port.
This screenshot shows three newly created virtual hosts, one for each customer.

root@linux:~# vi /etc/apache2/sites-available/choochoo
root@linux:~# cat /etc/apache2/sites-available/choochoo
<VirtualHost *:7000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/choochoo

^/VirtualHost>
root@linux:~# vi /etc/apache2/sites-available/chessclub42
root@linux:~# cat /etc/apache2/sites-available/chessclub42
<VirtualHost *:8000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/chessclub42

^/VirtualHost>
root@linux:~# vi /etc/apache2/sites-available/hunter2
root@linux:~# cat /etc/apache2/sites-available/hunter2
<VirtualHost *:9000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/hunter2

^/VirtualHost>

Notice the different port numbers 7000, 8000 and 9000. Notice also that we specified a
unique DocumentRoot for each website.

Are you using Ubuntu or Mint, then these configfiles need to end in .conf.

140

14.2. port virtual hosts on Debian

14.2.3. three extra ports

We need to enable these three ports on apache in the ports.conf file. Open this file with
vi and add three lines to listen on three extra ports.

root@linux:~# vi /etc/apache2/ports.conf

Verify with grep that the Listen directives are added correctly.

root@linux:~# grep ^Listen /etc/apache2/ports.conf
Listen 80
Listen 7000
Listen 8000
Listen 9000

14.2.4. three extra websites

Next we need to create three DocumentRoot directories.

root@linux:~# mkdir /var/^^w/choochoo
root@linux:~# mkdir /var/^^w/chessclub42
root@linux:~# mkdir /var/^^w/hunter2

And we have to put some really simple website in those directories.

root@linux:~# echo 'Choo Choo model train Choo Choo' > /var/^^w/choochoo/inde\
x.html
root@linux:~# echo 'Welcome to chess club 42' > /var/^^w/chessclub42/index.ht\
ml
root@linux:~# echo 'HaCkInG iS fUn At HuNtEr2' > /var/^^w/hunter2/index.html

14.2.5. enabling extra websites

The last step is to enable the websites with the a2ensite command. This command will
create links in sites-enabled.
The links are not there yet...

root@linux:~# cd /etc/apache2/
root@linux:/etc/apache2# ls sites-available/
chessclub42 choochoo default default-ssl hunter2
root@linux:/etc/apache2# ls sites-enabled/
000-default

So we run the a2ensite command for all websites.

root@linux:/etc/apache2# a2ensite choochoo
Enabling site choochoo.
To activate the new configuration, you need to run:

service apache2 reload
root@linux:/etc/apache2# a2ensite chessclub42
Enabling site chessclub42.
To activate the new configuration, you need to run:

service apache2 reload

141

14. apache web server

root@linux:/etc/apache2# a2ensite hunter2
Enabling site hunter2.
To activate the new configuration, you need to run:

service apache2 reload

The links are created, so we can tell apache.

root@linux:/etc/apache2# ls sites-enabled/
000-default chessclub42 choochoo hunter2
root@linux:/etc/apache2# service apache2 reload
Reloading web server config: apache2.
root@linux:/etc/apache2#

14.2.6. testing the three websites

Testing the model train club named Choo Choo on port 7000.

root@linux:/etc/apache2# wget 127.0.0.1:7000
--2014-05-06 21:16:03-- http:^/127.0.0.1:7000/
Connecting to 127.0.0.1:7000^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 32 [text/html]
Saving to: `index.html'

100%[==>] 32 --.-K/s in 0s

2014-05-06 21:16:03 (2.92 MB/s) - `index.html' saved [32/32]

root@linux:/etc/apache2# cat index.html
Choo Choo model train Choo Choo

Testing the chess club named Chess Club 42 on port 8000.

root@linux:/etc/apache2# wget 127.0.0.1:8000
--2014-05-06 21:16:20-- http:^/127.0.0.1:8000/
Connecting to 127.0.0.1:8000^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 25 [text/html]
Saving to: `index.html.1'

100%[===>] 25 --.-K/s in 0s

2014-05-06 21:16:20 (2.16 MB/s) - `index.html.1' saved [25/25]

root@linux:/etc/apache2# cat index.html.1
Welcome to chess club 42

Testing the hacker club named hunter2 on port 9000.

root@linux:/etc/apache2# wget 127.0.0.1:9000
--2014-05-06 21:16:30-- http:^/127.0.0.1:9000/
Connecting to 127.0.0.1:9000^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 26 [text/html]
Saving to: `index.html.2'

142

14.3. named virtual hosts on Debian

100%[===>] 26 --.-K/s in 0s

2014-05-06 21:16:30 (2.01 MB/s) - `index.html.2' saved [26/26]

root@linux:/etc/apache2# cat index.html.2
HaCkInG iS fUn At HuNtEr2

Cleaning up the temporary files.

root@linux:/etc/apache2# rm index.html index.html.1 index.html.2

Try testing from another computer using the ip-address of your server.

14.3. named virtual hosts on Debian

14.3.1. named virtual hosts

The chess club and themodel train club find the port numbers too hard to remember. They
would prefere to have their website accessible by name.

We continue work on the same server that has three websites on three ports. We need
to make sure those websites are accesible using the names choochoo.local, chess-
club42.local and hunter2.local.

We start by creating three new virtualhosts.

root@linux:/etc/apache2/sites-available# vi choochoo.local
root@linux:/etc/apache2/sites-available# vi chessclub42.local
root@linux:/etc/apache2/sites-available# vi hunter2.local
root@linux:/etc/apache2/sites-available# cat choochoo.local
<VirtualHost *:80>

ServerAdmin webmaster@localhost
ServerName choochoo.local
DocumentRoot /var/^^w/choochoo

^/VirtualHost>
root@linux:/etc/apache2/sites-available# cat chessclub42.local
<VirtualHost *:80>

ServerAdmin webmaster@localhost
ServerName chessclub42.local
DocumentRoot /var/^^w/chessclub42

^/VirtualHost>
root@linux:/etc/apache2/sites-available# cat hunter2.local
<VirtualHost *:80>

ServerAdmin webmaster@localhost
ServerName hunter2.local
DocumentRoot /var/^^w/hunter2

^/VirtualHost>
root@linux:/etc/apache2/sites-available#

Notice that they all listen on port 80 and have an extra ServerName directive.

143

14. apache web server

14.3.2. name resolution

We need some way to resolve names. This can be done with DNS, which is discussed in
another chapter. For this demo it is also possible to quickly add the three names to the
/etc/hosts file.

root@linux:/etc/apache2/sites-available# grep ^192 /etc/hosts
192.168.42.50 choochoo.local
192.168.42.50 chessclub42.local
192.168.42.50 hunter2.local

Note that you may have another ip address...

14.3.3. enabling virtual hosts

Next we enable them with a2ensite.

root@linux:/etc/apache2/sites-available# a2ensite choochoo.local
Enabling site choochoo.local.
To activate the new configuration, you need to run:

service apache2 reload
root@linux:/etc/apache2/sites-available# a2ensite chessclub42.local
Enabling site chessclub42.local.
To activate the new configuration, you need to run:

service apache2 reload
root@linux:/etc/apache2/sites-available# a2ensite hunter2.local
Enabling site hunter2.local.
To activate the new configuration, you need to run:

service apache2 reload

14.3.4. reload and verify

After a service apache2 reload the websites should be available by name.

root@linux:/etc/apache2/sites-available# service apache2 reload
Reloading web server config: apache2.
root@linux:/etc/apache2/sites-available# wget chessclub42.local
--2014-05-06 21:37:13-- http:^/chessclub42.local/
Resolving chessclub42.local (chessclub42.local)^^. 192.168.42.50
Connecting to chessclub42.local (chessclub42.local)|192.168.42.50|:80^^. conne\
cted.
HTTP request sent, awaiting response^^. 200 OK
Length: 25 [text/html]
Saving to: `index.html'

100%[===>] 25 --.-K/s in 0s

2014-05-06 21:37:13 (2.06 MB/s) - `index.html' saved [25/25]

root@linux:/etc/apache2/sites-available# cat index.html
Welcome to chess club 42

144

14.4. password protected website on Debian

14.4. password protected website on Debian

You can secure files and directories in your website with a .htaccess file that refers to a
.htpasswd file. The htpasswd command can create a .htpasswd file that contains a userid
and an (encrypted) password.

This screenshot creates a user and password for the hacker named cliff and uses the -c
flag to create the .htpasswd file.

root@linux:~# htpasswd -c /var/^^w/.htpasswd cliff
New password:
Re-type new password:
Adding password for user cliff
root@linux:~# cat /var/^^w/.htpasswd
cliff:$apr1$vujll0KL$./SZ4w9q0swhX93pQ0PVp.

Hacker rob alsowants access, this screenshot shows how to add a seconduser andpassword
to .htpasswd.

root@linux:~# htpasswd /var/^^w/.htpasswd rob
New password:
Re-type new password:
Adding password for user rob
root@linux:~# cat /var/^^w/.htpasswd
cliff:$apr1$vujll0KL$./SZ4w9q0swhX93pQ0PVp.
rob:$apr1$HNln1FFt$nRlpF0H.IW11/1DRq4lQo0

Both Cliff and Rob chose the same password (hunter2), but that is not visible in the .ht-
passwd file because of the different salts.

Next we need to create a .htaccess file in the DocumentRoot of the website we want to
protect. This screenshot shows an example.

root@linux:~# cd /var/^^w/hunter2/
root@linux:/var/^^w/hunter2# cat .htaccess
AuthUserFile /var/^^w/.htpasswd
AuthName "Members only!"
AuthType Basic
require valid-user

Note that we are protecting the website on port 9000 that we created earlier.

And because we put the website for the Hackerspace named hunter2 in a subdirec-
tory of the default website, we will need to adjust the AllowOvveride parameter in
/etc/apache2/sites-available/default as this screenshot shows (with line numbers on
debian10, your may vary).

9 <Directory /var/^^w/>
10 Options Indexes FollowSymLinks MultiViews
11 AllowOverride Authconfig
12 Order allow,deny
13 allow from all
14 ^/Directory

Now restart the apache2 server and test that it works!

145

14. apache web server

14.5. port virtual hosts on CentOS

14.5.1. default virtual host

Unlike Debian, CentOS has no virtualHost configuration file for its default website. Instead
the default configuration will throw a standard error page when no index file can be found
in the default location (/var/www/html).

14.5.2. three extra virtual hosts

In this scenario we create three additional websites for three customers that share a club-
house and want to jointly hire you. They are a model train club named Choo Choo, a chess
club named Chess Club 42 and a hackerspace named hunter2.

One way to put three websites on one web server, is to put each website on a different port.
This screenshot shows three newly created virtual hosts, one for each customer.

[root@CentOS65 ~^# vi /etc/httpd/conf.d/choochoo.conf
[root@CentOS65 ~^# cat /etc/httpd/conf.d/choochoo.conf
<VirtualHost *:7000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/html/choochoo

^/VirtualHost>
[root@CentOS65 ~^# vi /etc/httpd/conf.d/chessclub42.conf
[root@CentOS65 ~^# cat /etc/httpd/conf.d/chessclub42.conf
<VirtualHost *:8000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/html/chessclub42

^/VirtualHost>
[root@CentOS65 ~^# vi /etc/httpd/conf.d/hunter2.conf
[root@CentOS65 ~^# cat /etc/httpd/conf.d/hunter2.conf
<VirtualHost *:9000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/html/hunter2

^/VirtualHost>

Notice the different port numbers 7000, 8000 and 9000. Notice also that we specified a
unique DocumentRoot for each website.

14.5.3. three extra ports

We need to enable these three ports on apache in the httpd.conf file.

[root@CentOS65 ~^# vi /etc/httpd/conf/httpd.conf
root@linux:~# grep ^Listen /etc/httpd/conf/httpd.conf
Listen 80
Listen 7000
Listen 8000
Listen 9000

146

14.5. port virtual hosts on CentOS

14.5.4. SELinux guards our ports

If we try to restart our server, we will notice the following error:

[root@CentOS65 ~^# service httpd restart
Stopping httpd: [OK]
Starting httpd:

(13)Permission denied: make_sock: could not bind to address 0.0.0.0:7000
no listening sockets available, shutting down

[FAILED]

This is due to SELinux reserving ports 7000 and 8000 for other uses. We need to tell SELinux
we want to use these ports for http traffic

[root@CentOS65 ~^# semanage port -m -t http_port_t -p tcp 7000
[root@CentOS65 ~^# semanage port -m -t http_port_t -p tcp 8000
[root@CentOS65 ~^# service httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]

14.5.5. three extra websites

Next we need to create three DocumentRoot directories.

[root@CentOS65 ~^# mkdir /var/^^w/html/choochoo
[root@CentOS65 ~^# mkdir /var/^^w/html/chessclub42
[root@CentOS65 ~^# mkdir /var/^^w/html/hunter2

And we have to put some really simple website in those directories.

[root@CentOS65 ~^# echo 'Choo Choo model train Choo Choo' > /var/^^w/html/chooc\
hoo/index.html
[root@CentOS65 ~^# echo 'Welcome to chess club 42' > /var/^^w/html/chessclub42/\
index.html
[root@CentOS65 ~^# echo 'HaCkInG iS fUn At HuNtEr2' > /var/^^w/html/hunter2/ind\
ex.html

14.5.6. enabling extra websites

The only way to enable or disable configurations in RHEL/CentOS is by renaming or moving
the configuration files. Any file in /etc/httpd/conf.d ending on .conf will be loaded by Apache.
To disable a site we can either rename the file or move it to another directory.

The files are created, so we can tell apache.

[root@CentOS65 ~^# ls /etc/httpd/conf.d/
chessclub42.conf choochoo.conf hunter2.conf README welcome.conf
[root@CentOS65 ~^# service httpd reload
Reloading httpd:

147

14. apache web server

14.5.7. testing the three websites

Testing the model train club named Choo Choo on port 7000.

[root@CentOS65 ~^# wget 127.0.0.1:7000
--2014-05-11 11:59:36-- http:^/127.0.0.1:7000/
Connecting to 127.0.0.1:7000^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 32 [text/html]
Saving to: `index.html'

100%[===>] 32 --.-K/s in 0s

2014-05-11 11:59:36 (4.47 MB/s) - `index.html' saved [32/32]

[root@CentOS65 ~^# cat index.html
Choo Choo model train Choo Choo

Testing the chess club named Chess Club 42 on port 8000.

[root@CentOS65 ~^# wget 127.0.0.1:8000
--2014-05-11 12:01:30-- http:^/127.0.0.1:8000/
Connecting to 127.0.0.1:8000^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 25 [text/html]
Saving to: `index.html.1'

100%[===>] 25 --.-K/s in 0s

2014-05-11 12:01:30 (4.25 MB/s) - `index.html.1' saved [25/25]

root@linux:/etc/apache2# cat index.html.1
Welcome to chess club 42

Testing the hacker club named hunter2 on port 9000.

[root@CentOS65 ~^# wget 127.0.0.1:9000
--2014-05-11 12:02:37-- http:^/127.0.0.1:9000/
Connecting to 127.0.0.1:9000^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 26 [text/html]
Saving to: `index.html.2'

100%[===>] 26 --.-K/s in 0s

2014-05-11 12:02:37 (4.49 MB/s) - `index.html.2' saved [26/26]

root@linux:/etc/apache2# cat index.html.2
HaCkInG iS fUn At HuNtEr2

Cleaning up the temporary files.

[root@CentOS65 ~^# rm index.html index.html.1 index.html.2

148

14.6. named virtual hosts on CentOS

14.5.8. firewall rules

If we attempt to access the site from another machine however, we will not be able to view
the website yet. The firewall is blocking incoming connections. We need to open these
incoming ports first

[root@CentOS65 ~^# iptables -I INPUT -p tcp --dport 80 -j ACCEPT
[root@CentOS65 ~^# iptables -I INPUT -p tcp --dport 7000 -j ACCEPT
[root@CentOS65 ~^# iptables -I INPUT -p tcp --dport 8000 -j ACCEPT
[root@CentOS65 ~^# iptables -I INPUT -p tcp --dport 9000 -j ACCEPT

And if we want these rules to remain active after a reboot, we need to save them

[root@CentOS65 ~^# service iptables save
iptables: Saving firewall rules to /etc/sysconfig/iptables:[OK]

14.6. named virtual hosts on CentOS

14.6.1. named virtual hosts

The chess club and themodel train club find the port numbers too hard to remember. They
would prefere to have their website accessible by name.

We continue work on the same server that has three websites on three ports. We need
to make sure those websites are accesible using the names choochoo.local, chess-
club42.local and hunter2.local.
First, we need to enable named virtual hosts in the configuration

[root@CentOS65 ~^# vi /etc/httpd/conf/httpd.conf
[root@CentOS65 ~^# grep ^NameVirtualHost /etc/httpd/conf/httpd.conf
NameVirtualHost *:80
[root@CentOS65 ~^#

Next we need to create three new virtualhosts.

[root@CentOS65 ~^# vi /etc/httpd/conf.d/choochoo.local.conf
[root@CentOS65 ~^# vi /etc/httpd/conf.d/chessclub42.local.conf
[root@CentOS65 ~^# vi /etc/httpd/conf.d/hunter2.local.conf
[root@CentOS65 ~^# cat /etc/httpd/conf.d/choochoo.local.conf
<VirtualHost *:80>

ServerAdmin webmaster@localhost
ServerName choochoo.local
DocumentRoot /var/^^w/html/choochoo

^/VirtualHost>
[root@CentOS65 ~^# cat /etc/httpd/conf.d/chessclub42.local.conf
<VirtualHost *:80>

ServerAdmin webmaster@localhost
ServerName chessclub42.local
DocumentRoot /var/^^w/html/chessclub42

^/VirtualHost>
[root@CentOS65 ~^# cat /etc/httpd/conf.d/hunter2.local.conf
<VirtualHost *:80>

ServerAdmin webmaster@localhost
ServerName hunter2.local

149

14. apache web server

DocumentRoot /var/^^w/html/hunter2
^/VirtualHost>
[root@CentOS65 ~^#

Notice that they all listen on port 80 and have an extra ServerName directive.

14.6.2. name resolution

We need some way to resolve names. This can be done with DNS, which is discussed in
another chapter. For this demo it is also possible to quickly add the three names to the
/etc/hosts file.

[root@CentOS65 ~^# grep ^192 /etc/hosts
192.168.1.225 choochoo.local
192.168.1.225 chessclub42.local
192.168.1.225 hunter2.local

Note that you may have another ip address...

14.6.3. reload and verify

After a service httpd reload the websites should be available by name.

[root@CentOS65 ~^# service httpd reload
Reloading httpd:
[root@CentOS65 ~^# wget chessclub42.local
--2014-05-25 16:59:14-- http:^/chessclub42.local/
Resolving chessclub42.local^^. 192.168.1.225
Connecting to chessclub42.local|192.168.1.225|:80^^. connected.
HTTP request sent, awaiting response^^. 200 OK
Length: 25 [text/html]
Saving to: âindex.htmlâ

100%[===>] 25 --.-K/s in 0s

2014-05-25 16:59:15 (1014 KB/s) - `index.html' saved [25/25]

[root@CentOS65 ~^# cat index.html
Welcome to chess club 42

14.7. password protected website on CentOS

You can secure files and directories in your website with a .htaccess file that refers to a
.htpasswd file. The htpasswd command can create a .htpasswd file that contains a userid
and an (encrypted) password.

This screenshot creates a user and password for the hacker named cliff and uses the -c
flag to create the .htpasswd file.

150

14.7. password protected website on CentOS

[root@CentOS65 ~^# htpasswd -c /var/^^w/.htpasswd cliff
New password:
Re-type new password:
Adding password for user cliff
[root@CentOS65 ~^# cat /var/^^w/.htpasswd
cliff:QNwTrymMLBctU

Hacker rob alsowants access, this screenshot shows how to add a seconduser andpassword
to .htpasswd.

[root@CentOS65 ~^# htpasswd /var/^^w/.htpasswd rob
New password:
Re-type new password:
Adding password for user rob
[root@CentOS65 ~^# cat /var/^^w/.htpasswd
cliff:QNwTrymMLBctU
rob:EC2vOCcrMXDoM
[root@CentOS65 ~^#

Both Cliff and Rob chose the same password (hunter2), but that is not visible in the .ht-
passwd file because of the different salts.
Next we need to create a .htaccess file in the DocumentRoot of the website we want to
protect. This screenshot shows an example.

[root@CentOS65 ~^# cat /var/^^w/html/hunter2/.htaccess
AuthUserFile /var/^^w/.htpasswd
AuthName "Members only!"
AuthType Basic
require valid-user

Note that we are protecting the website on port 9000 that we created earlier.

And because we put the website for the Hackerspace named hunter2 in a subdirec-
tory of the default website, we will need to adjust the AllowOvveride parameter in
/etc/httpd/conf/httpd.conf under the <Directory "/var/^^w/html"> directive as this
screenshot shows.

[root@CentOS65 ~^# vi /etc/httpd/conf/httpd.conf

<Directory "/var/^^w/html">

#
Possible values for the Options directive are "None", "All",
or any combination of:
Indexes Includes FollowSymLinks SymLinksifOwnerMatch ExecCGI MultiViews
#
Note that "MultiViews" must be named *explicitly* --- "Options All"
doesn't give it to you.
#
The Options directive is both complicated and important. Please see
http:^/httpd.apache.org/docs/2.2/mod/core.html#options
for more information.
#

Options Indexes FollowSymLinks

#
AllowOverride controls what directives may be placed in .htaccess files.

151

14. apache web server

It can be "All", "None", or any combination of the keywords:
Options FileInfo AuthConfig Limit
#

AllowOverride Authconfig

#
Controls who can get stuff from this server.
#

Order allow,deny
Allow from all

^/Directory>

Now restart the apache2 server and test that it works!

14.8. troubleshooting apache

Whenapache restarts, itwill verify the syntaxof files in the configuration folder/etc/apache2
on debian or /etc/httpd on CentOS and it will tell you the name of the faulty file, the line
number and an explanation of the error.

root@linux:~# service apache2 restart
apache2: Syntax error on line 268 of /etc/apache2/apache2.conf: Syntax error o\
n line 1 of /etc/apache2/sites-enabled/chessclub42: /etc/apache2/sites-
enabled\
/chessclub42:4: <VirtualHost> was not closed.\n/etc/apache2/sites-enabled/ches\
sclub42:1: <VirtualHost> was not closed.
Action 'configtest' failed.
The Apache error log may have more information.
failed!

Below you see the problem... a missing / before on line 4.

root@linux:~# cat /etc/apache2/sites-available/chessclub42
<VirtualHost *:8000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/chessclub42

<VirtualHost>

Let us force another error by renaming the directory of one of our websites:

root@linux:~# mv /var/^^w/choochoo/ /var/^^w/chooshoo
root@linux:~# !ser
service apache2 restart
Restarting web server: apache2Warning: DocumentRoot [/var/^^w/choochoo] does n\
ot exist
Warning: DocumentRoot [/var/^^w/choochoo] does not exist
^^. waiting Warning: DocumentRoot [/var/^^w/choochoo] does not exist

Warning: DocumentRoot [/var/^^w/choochoo] does not exist
.

As you can see, apache will tell you exactly what is wrong.

You can also troubleshoot by connecting to thewebsite via a browser and then checking the
apache log files in /var/log/apache.

152

14.9. virtual hosts example

14.9. virtual hosts example

Below is a sample virtual host configuration. This virtual hosts overrules the default Apache
ErrorDocument directive.

<VirtualHost 83.217.76.245:80>
ServerName cobbaut.be
ServerAlias ^^w.cobbaut.be
DocumentRoot /home/paul/public_html
ErrorLog /home/paul/logs/error_log
CustomLog /home/paul/logs/access_log common
ScriptAlias /cgi-bin/ /home/paul/cgi-bin/
<Directory /home/paul/public_html>

Options Indexes IncludesNOEXEC FollowSymLinks
allow from all

^/Directory>
ErrorDocument 404 http:^/^^w.cobbaut.be/cobbaut.php
^/VirtualHost>

14.10. aliases and redirects

Apache supports aliases for directories, like this example shows.

Alias /paul/ "/home/paul/public_html/"

Similarly, content can be redirected to another website or web server.

Redirect permanent /foo http:^/^^w.foo.com/bar

14.11. more on .htaccess

You can do much more with .htaccess. One example is to use .htaccess to prevent people
from certain domains to access your website. Like in this case, where a number of referer
spammers are blocked from the website.

student@linux:~/cobbaut.be$ cat .htaccess
Options +FollowSymlinks
RewriteEngine On
RewriteCond %{HTTP_REFERER} ^http:^/(^^w\.)?buy-adipex.fw.nu.*$ [OR]
RewriteCond %{HTTP_REFERER} ^http:^/(^^w\.)?buy-levitra.asso.ws.*$ [NC,OR]
RewriteCond %{HTTP_REFERER} ^http:^/(^^w\.)?buy-tramadol.fw.nu.*$ [NC,OR]
RewriteCond %{HTTP_REFERER} ^http:^/(^^w\.)?buy-viagra.lookin.at.*$ [NC,OR]
^^.
RewriteCond %{HTTP_REFERER} ^http:^/(^^w\.)?^^w.healthinsurancehelp.net.*$ [NC]
RewriteRule .* - [F,L]
student@linux:~/cobbaut.be$

14.12. traffic

Apache keeps a log of all visitors. The webalizer is often used to parse this log into nice html
statistics.

153

14. apache web server

14.13. self signed cert on Debian

Below is a very quick guide on setting up Apache2 on Debian 7 with a self-signed certifi-
cate.

Chances are these packages are already installed.

root@linux:~# aptitude install apache2 openssl
No packages will be installed, upgraded, or removed.
0 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 0 B of archives. After unpacking 0 B will be used.

Create a directory to store the certs, and use openssl to create a self signed cert that is valid
for 999 days.

root@linux:~# mkdir /etc/ssl/localcerts
root@linux:~# openssl req -new -x509 -days 999 -nodes -out /etc/ssl/local\
certs/apache.pem -keyout /etc/ssl/localcerts/apache.key
Generating a 2048 bit RSA private key
^^.
^^.
writing new private key to '/etc/ssl/localcerts/apache.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:BE
State or Province Name (full name) [Some-State]:Antwerp
Locality Name (eg, city) []:Antwerp
Organization Name (eg, company) [Internet Widgits Pty Ltd]:linux-training.be
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:Paul
Email Address []:

A little security never hurt anyone.

root@linux:~# ls -l /etc/ssl/localcerts/
total 8
-rw-r--r-- 1 root root 1704 Sep 16 18:24 apache.key
-rw-r--r-- 1 root root 1302 Sep 16 18:24 apache.pem
root@linux:~# chmod 600 /etc/ssl/localcerts^*
root@linux:~# ls -l /etc/ssl/localcerts/
total 8
-rw------- 1 root root 1704 Sep 16 18:24 apache.key
-rw------- 1 root root 1302 Sep 16 18:24 apache.pem

Enable the apache ssl mod.

root@linux:~# a2enmod ssl
Enabling module ssl.
See /usr/share/doc/apache2.2-common/README.Debian.gz on how to configure SSL\
and create self-signed certificates.

To activate the new configuration, you need to run:
service apache2 restart

154

14.13. self signed cert on Debian

Create the website configuration.

root@linux:~# vi /etc/apache2/sites-available/choochoos
root@linux:~# cat /etc/apache2/sites-available/choochoos
<VirtualHost *:7000>

ServerAdmin webmaster@localhost
DocumentRoot /var/^^w/choochoos
SSLEngine On
SSLCertificateFile /etc/ssl/localcerts/apache.pem
SSLCertificateKeyFile /etc/ssl/localcerts/apache.key

^/VirtualHost>
root@linux:~#

And create the website itself.

root@linux:/var/^^w/choochoos# vi index.html
root@linux:/var/^^w/choochoos# cat index.html
Choo Choo HTTPS secured model train Choo Choo

Enable the website and restart (or reload) apache2.

root@linux:/var/^^w/choochoos# a2ensite choochoos
Enabling site choochoos.
To activate the new configuration, you need to run:

service apache2 reload
root@linux:/var/^^w/choochoos# service apache2 restart
Restarting web server: apache2 ^^. waiting .

Chances are your browser will warn you about the self signed certificate.

155

14. apache web server

14.14. self signed cert on RHEL/CentOS

Below is a quick way to create a self signed cert for https on RHEL/CentOS. You may need
these packages:

[root@paulserver ~^# yum install httpd openssl mod_ssl
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: ftp.belnet.be
* extras: ftp.belnet.be
* updates: mirrors.vooservers.com

base | 3.7 kB 00:00
Setting up Install Process
Package httpd-2.2.15-31.el6.centos.x86_64 already installed and latest version
Package openssl-1.0.1e-16.el6_5.15.x86_64 already installed and latest version
Package 1:mod_ssl-2.2.15-31.el6.centos.x86_64 already ins^^. and latest version
Nothing to do

We use openssl to create the certificate.

[root@paulserver ~^# mkdir certs
[root@paulserver ~^# cd certs
[root@paulserver certs^# openssl genrsa -out ca.key 2048

156

14.14. self signed cert on RHEL/CentOS

Generating RSA private key, 2048 bit long modulus
.........^^+
...^^+
e is 65537 (0x10001)
[root@paulserver certs^# openssl req -new -key ca.key -out ca.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:BE
State or Province Name (full name) []:antwerp
Locality Name (eg, city) [Default City]:antwerp
Organization Name (eg, company) [Default Company Ltd]:antwerp
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:paulserver
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
[root@paulserver certs^# openssl x509 -req -days 365 -in ca.csr -signkey ca.ke\
y -out ca.crt
Signature ok
subject=/C=BE/ST=antwerp/L=antwerp/O=antwerp/CN=paulserver
Getting Private key

We copy the keys to the right location (You may be missing SELinux info here).

[root@paulserver certs^# cp ca.crt /etc/pki/tls/certs/
[root@paulserver certs^# cp ca.key ca.csr /etc/pki/tls/private/

We add the location of our keys to this file, and also add the NameVirtualHost *:443 direc-
tive.

[root@paulserver certs^# vi /etc/httpd/conf.d/ssl.conf
[root@paulserver certs^# grep ^SSLCerti /etc/httpd/conf.d/ssl.conf
SSLCertificateFile /etc/pki/tls/certs/ca.crt
SSLCertificateKeyFile /etc/pki/tls/private/ca.key

Create a website configuration.

[root@paulserver certs^# vi /etc/httpd/conf.d/choochoos.conf
[root@paulserver certs^# cat /etc/httpd/conf.d/choochoos.conf
<VirtualHost *:443>

SSLEngine on
SSLCertificateFile /etc/pki/tls/certs/ca.crt
SSLCertificateKeyFile /etc/pki/tls/private/ca.key
DocumentRoot /var/^^w/choochoos
ServerName paulserver

^/VirtualHost>
[root@paulserver certs^#

Create a simple website and restart apache.

157

14. apache web server

[root@paulserver certs^# mkdir /var/^^w/choochoos
[root@paulserver certs^# echo HTTPS model train choochoos > /var/^^w/choochoos/\
index.html
[root@paulserver httpd^# service httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]

And your browser will probably warn you that this certificate is self signed.

14.15. practice: apache

1. Verify that Apache is installed and running.

2. Browse to the Apache HTMLmanual.

3. Create three virtual hosts that listen on ports 8472, 31337 and 1201. Test that it all works.

4. Create three named virtual hosts startrek.local, starwars.local and stargate.local. Test that
it all works.

5. Create a virtual hosts that listens on another ip-address.

6. Protect one of your websites with a user/password combo.

158

15. scripting loops

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

15.1. test []

The test command can test whether something is true or false. Let’s start by testing
whether 10 is greater than 55.

[student@linux ~]$ test 10 -gt 55 ; echo $?
1
[student@linux ~]$

The test command returns 1 if the test fails. Andas you see in thenext screenshot, test returns
0 when a test succeeds.

[student@linux ~]$ test 56 -gt 55 ; echo $?
0
[student@linux ~]$

If you prefer true and false, then write the test like this.

[student@linux ~]$ test 56 -gt 55 ^& echo true ^| echo false
true
[student@linux ~]$ test 6 -gt 55 ^& echo true ^| echo false
false

The test command can also be written as square brackets, the screenshot below is identical
to the one above.

[student@linux ~]$ [56 -gt 55] ^& echo true ^| echo false
true
[student@linux ~]$ [6 -gt 55] ^& echo true ^| echo false
false

Below are some example tests. Take a look at man test to see more options for tests.

[-d foo] Does the directory foo exist ?
[-e bar] Does the file bar exist ?
['/etc' = $PWD] Is the string /etc equal to the variable $PWD ?
[$1 ^= 'secret'] Is the first parameter different from secret ?
[55 -lt $bar] Is 55 less than the value of $bar ?
[$foo -ge 1000] Is the value of $foo greater or equal to 1000 ?
["abc" < $bar] Does abc sort before the value of $bar ?
[-f foo] Is foo a regular file ?
[-r bar] Is bar a readable file ?
[foo -nt bar] Is file foo newer than file bar ?
[-o nounset] Is the shell option nounset set ?

159

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

15. scripting loops

Tests can be combined with logical AND and OR.

student@linux:~$ [66 -gt 55 -a 66 -lt 500] ^& echo true ^| echo false
true
student@linux:~$ [66 -gt 55 -a 660 -lt 500] ^& echo true ^| echo false
false
student@linux:~$ [66 -gt 55 -o 660 -lt 500] ^& echo true ^| echo false
true

15.2. if then else

The if then else construction is about choice. If a certain condition is met, then execute
something, else execute something else. The example below tests whether a file exists, and
if the file exists then a proper message is echoed.

^!/bin/bash

if [-f isit.txt]
then echo isit.txt exists!
else echo isit.txt not found!
fi

If we name the above script ’choice’, then it executes like this.

[student@linux scripts]$./choice
isit.txt not found!
[student@linux scripts]$ touch isit.txt
[student@linux scripts]$./choice
isit.txt exists!
[student@linux scripts]$

15.3. if then elif

You can nest a new if inside an elsewith elif. This is a simple example.

^!/bin/bash
count=42
if [$count -eq 42]
then

echo "42 is correct."
elif [$count -gt 42]
then

echo "Too much."
else

echo "Not enough."
fi

160

15.4. for loop

15.4. for loop

The example below shows the syntax of a classical for loop in bash.

for i in 1 2 4
do

echo $i
done

An example of a for loop combined with an embedded shell.

^!/bin/ksh
for counter in `seq 1 20`
do

echo counting from 1 to 20, now at $counter
sleep 1

done

The same example as above can be written without the embedded shell using the bash
{from^.to} shorthand.

^!/bin/bash
for counter in {1^.20}
do

echo counting from 1 to 20, now at $counter
sleep 1

done

This for loop uses file globbing (from the shell expansion). Putting the instruction on the
command line has identical functionality.

kahlan@solexp11$ ls
count.ksh go.ksh
kahlan@solexp11$ for file in *.ksh ; do cp $file $file.backup ; done
kahlan@solexp11$ ls
count.ksh count.ksh.backup go.ksh go.ksh.backup

15.5. while loop

Below a simple example of a while loop.

i=100;
while [$i -ge 0] ;
do

echo Counting down, from 100 to 0, now at $i;
let i--;

done

Endless loops can bemade with while true or while : , where the colon is the equivalent
of no operation in the Korn and bash shells.

161

15. scripting loops

^!/bin/ksh
endless loop
while :
do
echo hello
sleep 1

done

15.6. until loop

Below a simple example of an until loop.

let i=100;
until [$i -le 0] ;
do

echo Counting down, from 100 to 1, now at $i;
let i--;

done

15.7. practice: scripting tests and loops

1. Write a script that uses a for loop to count from 3 to 7.

2. Write a script that uses a for loop to count from 1 to 17000.

3. Write a script that uses a while loop to count from 3 to 7.

4. Write a script that uses an until loop to count down from 8 to 4.

5. Write a script that counts the number of files ending in .txt in the current directory.

6. Wrap an if statement around the script so it is also correct when there are zero files
ending in .txt.

15.8. solution: scripting tests and loops

1. Write a script that uses a for loop to count from 3 to 7.

1 ^!/bin/bash
2

3 for i in 3 4 5 6 7
4 do
5 echo "Counting from 3 to 7, now at ${i}"
6 done

2. Write a script that uses a for loop to count from 1 to 17000.

1 ^!/bin/bash
2

3 for i in `seq 1 17000`
4 do
5 echo "Counting from 1 to 17000, now at ${i}"
6 done

3. Write a script that uses a while loop to count from 3 to 7.

162

15.8. solution: scripting tests and loops

1 ^!/bin/bash
2

3 i=3
4 while [$i -le 7]
5 do
6 echo "Counting from 3 to 7, now at ${i}"
7 let i=i+1
8 done

4. Write a script that uses an until loop to count down from 8 to 4.

1 ^!/bin/bash
2

3 i=8
4 until [$i -lt 4]
5 do
6 echo "Counting down from 8 to 4, now at ${i}"
7 let i=i-1
8 done

5. Write a script that counts the number of files ending in .txt in the current directory.

1 ^!/bin/bash
2

3 let i=0
4 for file in *.txt
5 do
6 let i^+
7 done
8 echo "There are ${i} files ending in .txt"

6. Wrap an if statement around the script so it is also correct when there are zero files
ending in .txt.

1 ^!/bin/bash
2

3 ls *.txt > /dev/null 2>&1
4 if [$? -ne 0]
5 then echo "There are 0 files ending in .txt"
6 else
7 let i=0
8 for file in *.txt
9 do
10 let i^+
11 done
12 echo "There are ${i} files ending in .txt"
13 fi

163

16. scripting parameters

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

16.1. script parameters

A bash shell script can have parameters. The numbering you see in the script below contin-
ues if you have more parameters. You also have special parameters containing the number
of parameters, a string of all of them, and also the process id, and the last return code. The
man page of bash has a full list.

^!/bin/bash
echo The first argument is $1
echo The second argument is $2
echo The third argument is $3

echo \$ $$ PID of the script
echo \# $# count arguments
echo \? $? last return code
echo * $* all the arguments

Below is the output of the script above in action.

[student@linux scripts]$./pars one two three
The first argument is one
The second argument is two
The third argument is three
$ 5610 PID of the script
3 count arguments
? 0 last return code
* one two three all the arguments

Once more the same script, but with only two parameters.

[student@linux scripts]$./pars 1 2
The first argument is 1
The second argument is 2
The third argument is
$ 5612 PID of the script
2 count arguments
? 0 last return code
* 1 2 all the arguments
[student@linux scripts]$

Here is another example, where we use $0. The $0 parameter contains the name of the
script.

165

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

16. scripting parameters

student@linux~$ cat myname
echo this script is called $0
student@linux~$./myname
this script is called ./myname
student@linux~$ mv myname test42
student@linux~$./test42
this script is called ./test42

16.2. shift through parameters

The shift statement can parse all parameters one by one. This is a sample script.

kahlan@solexp11$ cat shift.ksh
^!/bin/ksh

if ["$#" ^= "0"]
then
echo You have to give at least one parameter.
exit 1

fi

while (($#))
do
echo You gave me $1
shift
done

Below is some sample output of the script above.

kahlan@solexp11$./shift.ksh one
You gave me one
kahlan@solexp11$./shift.ksh one two three 1201 "33 42"
You gave me one
You gave me two
You gave me three
You gave me 1201
You gave me 33 42
kahlan@solexp11$./shift.ksh
You have to give at least one parameter.

16.3. runtime input

You can ask the user for input with the read command in a script.

^!/bin/bash
echo -n Enter a number:
read number

166

16.4. sourcing a config file

16.4. sourcing a config file

The source (as seen in the shell chapters) can be used to source a configuration file.

Below a sample configuration file for an application.

[student@linux scripts]$ cat myApp.conf
The config file of myApp

Enter the path here
myAppPath=/var/myApp

Enter the number of quines here
quines=5

And here an application that uses this file.

[student@linux scripts]$ cat myApp.bash
^!/bin/bash
#
Welcome to the myApp application
#

. ./myApp.conf

echo There are $quines quines

The running application can use the values inside the sourced configuration file.

[student@linux scripts]$./myApp.bash
There are 5 quines
[student@linux scripts]$

16.5. get script options with getopts

The getopts function allows you to parse options given to a command. The following script
allows for any combination of the options a, f and z.

kahlan@solexp11$ cat options.ksh
^!/bin/ksh

while getopts ":afz" option;
do
case $option in
a)
echo received -a
^;

f)
echo received -f
^;

z)
echo received -z
^;

*)
echo "invalid option -$OPTARG"

167

16. scripting parameters

^;
esac

done

This is sample output from the script above. Firstweuse correct options, thenwe enter twice
an invalid option.

kahlan@solexp11$./options.ksh
kahlan@solexp11$./options.ksh -af
received -a
received -f
kahlan@solexp11$./options.ksh -zfg
received -z
received -f
invalid option -g
kahlan@solexp11$./options.ksh -a -b -z
received -a
invalid option -b
received -z

You can also check for options that need an argument, as this example shows.

kahlan@solexp11$ cat argoptions.ksh
^!/bin/ksh

while getopts ":af:z" option;
do
case $option in
a)
echo received -a
^;

f)
echo received -f with $OPTARG
^;

z)
echo received -z
^;

:)
echo "option -$OPTARG needs an argument"
^;

*)
echo "invalid option -$OPTARG"
^;

esac
done

This is sample output from the script above.

kahlan@solexp11$./argoptions.ksh -a -f hello -z
received -a
received -f with hello
received -z
kahlan@solexp11$./argoptions.ksh -zaf 42
received -z
received -a
received -f with 42
kahlan@solexp11$./argoptions.ksh -zf
received -z
option -f needs an argument

168

16.6. get shell options with shopt

16.6. get shell options with shopt

You can toggle the values of variables controlling optional shell behaviour with the shopt
built-in shell command. The example below first verifies whether the cdspell option is set; it
is not. The next shopt command sets the value, and the third shopt command verifies that
the option really is set. You can now use minor spelling mistakes in the cd command. The
man page of bash has a complete list of options.

student@linux:~$ shopt -q cdspell ; echo $?
1
student@linux:~$ shopt -s cdspell
student@linux:~$ shopt -q cdspell ; echo $?
0
student@linux:~$ cd /Etc
/etc

16.7. practice: parameters and options

1. Write a script that receives four parameters, and outputs them in reverse order.

2. Write a script that receives two parameters (two filenames) and outputs whether those
files exist.

3. Write a script that asks for a filename. Verify existence of the file, then verify that you own
the file, and whether it is writable. If not, then make it writable.

4. Make a configuration file for the previous script. Put a logging switch in the config file,
logging means writing detailed output of everything the script does to a log file in /tmp.

16.8. solution: parameters and options

1. Write a script that receives four parameters, and outputs them in reverse order.

echo $4 $3 $2 $1

2. Write a script that receives two parameters (two filenames) and outputs whether those
files exist.

^!/bin/bash

if [-f $1]
then echo $1 exists!
else echo $1 not found!
fi

if [-f $2]
then echo $2 exists!
else echo $2 not found!
fi

3. Write a script that asks for a filename. Verify existence of the file, then verify that you own
the file, and whether it is writable. If not, then make it writable.

4. Make a configuration file for the previous script. Put a logging switch in the config file,
logging means writing detailed output of everything the script does to a log file in /tmp.

169

Part VI.

Advanced text processing

171

17. file globbing

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Typing man 7 glob (on Debian) will tell you that long ago there was a program called
/etc/glob that would expand wildcard patterns.

Today the shell is responsible for file globbing (or dynamic filename generation). This
chapter will explain file globbing.

17.1. * asterisk

The asterisk * is interpreted by the shell as a sign to generate filenames, matching the aster-
isk to any combination of characters (even none). When no path is given, the shell will use
filenames in the current directory. See theman page of glob(7) for more information. (This
is part of LPI topic 1.103.3.)

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls File*
File4 File55 FileA Fileab FileAB
[student@linux gen]$ ls file*
file1 file2 file3 fileab fileabc
[student@linux gen]$ ls *ile55
File55
[student@linux gen]$ ls F*ile55
File55
[student@linux gen]$ ls F*55
File55
[student@linux gen]$

17.2. ? question mark

Similar to the asterisk, the question mark ? is interpreted by the shell as a sign to generate
filenames, matching the question mark with exactly one character.

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls File?
File4 FileA
[student@linux gen]$ ls Fil?4
File4
[student@linux gen]$ ls Fil^?
File4 FileA
[student@linux gen]$ ls File^?
File55 Fileab FileAB
[student@linux gen]$

173

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

17. file globbing

17.3. [] square brackets

The square bracket [is interpreted by the shell as a sign to generate filenames, matching
any of the characters between [and the first subsequent]. The order in this list between
the brackets is not important. Each pair of brackets is replaced by exactly one character.

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls File[5A]
FileA
[student@linux gen]$ ls File[A5]
FileA
[student@linux gen]$ ls File[A5][5b]
File55
[student@linux gen]$ ls File[a5][5b]
File55 Fileab
[student@linux gen]$ ls File[a5][5b][abcdefghijklm]
ls: File[a5][5b][abcdefghijklm]: No such file or directory
[student@linux gen]$ ls file[a5][5b][abcdefghijklm]
fileabc
[student@linux gen]$

You can also exclude characters from a list between square brackets with the exclamation
mark !. And you are allowed to make combinations of these wild cards.

[student@linux gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[student@linux gen]$ ls file[a5][!Z]
fileab
[student@linux gen]$ ls file[!5]*
file1 file2 file3 fileab fileabc
[student@linux gen]$ ls file[!5]?
fileab
[student@linux gen]$

17.4. a-z and 0-9 ranges

The bash shell will also understand ranges of characters between brackets.

[student@linux gen]$ ls
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[student@linux gen]$ ls file[a-z]*
fileab fileab2 fileabc
[student@linux gen]$ ls file[0-9]
file1 file2 file3
[student@linux gen]$ ls file[a-z][a-z][0-9]*
fileab2
[student@linux gen]$

174

17.5. $LANG and square brackets

17.5. $LANG and square brackets

But, don’t forget the influence of the LANG variable. Some languages include lower case
letters in an upper case range (and vice versa).

student@linux:~/test$ ls [A-Z]ile?
file1 file2 file3 File4
student@linux:~/test$ ls [a-z]ile?
file1 file2 file3 File4
student@linux:~/test$ echo $LANG
en_US.UTF-8
student@linux:~/test$ LANG=C
student@linux:~/test$ echo $LANG
C
student@linux:~/test$ ls [a-z]ile?
file1 file2 file3
student@linux:~/test$ ls [A-Z]ile?
File4
student@linux:~/test$

If $LC_ALL is set, then this will also need to be reset to prevent file globbing.

17.6. preventing file globbing

The screenshot below should be no surprise. The echo * will echo a * when in an empty
directory. And it will echo the names of all files when the directory is not empty.

student@linux:~$ mkdir test42
student@linux:~$ cd test42
student@linux:~/test42$ echo *
*
student@linux:~/test42$ touch file42 file33
student@linux:~/test42$ echo *
file33 file42

Globbing can be prevented using quotes or by escaping the special characters, as shown in
this screenshot.

student@linux:~/test42$ echo *
file33 file42
student@linux:~/test42$ echo *
*
student@linux:~/test42$ echo '*'
*
student@linux:~/test42$ echo "*"
*

17.7. practice: shell globbing

1. Create a test directory and enter it.

2. Create the following files :

175

17. file globbing

file1
file10
file11
file2
File2
File3
file33
fileAB
filea
fileA
fileAAA
file(
file 2

(the last one has 6 characters including a space)

3. List (with ls) all files starting with file

4. List (with ls) all files starting with File

5. List (with ls) all files starting with file and ending in a number.

6. List (with ls) all files starting with file and ending with a letter

7. List (with ls) all files starting with File and having a digit as fifth character.

8. List (with ls) all files starting with File and having a digit as fifth character and nothing
else.

9. List (with ls) all files starting with a letter and ending in a number.

10. List (with ls) all files that have exactly five characters.

11. List (with ls) all files that start with f or F and end with 3 or A.

12. List (with ls) all files that start with f have i or R as second character and end in a number.

13. List all files that do not start with the letter F.

14. Copy the value of $LANG to $MyLANG.

15. Show the influence of $LANG in listing A-Z or a-z ranges.

16. You receive information that one of your servers was cracked, the cracker probably re-
placed the ls command. You know that the echo command is safe to use. Can echo replace
ls ? How can you list the files in the current directory with echo ?

17. Is there another command besides cd to change directories ?

17.8. solution: shell globbing

1. Create a test directory and enter it.

mkdir testdir; cd testdir

2. Create the following files :

176

17.8. solution: shell globbing

file1
file10
file11
file2
File2
File3
file33
fileAB
filea
fileA
fileAAA
file(
file 2

(the last one has 6 characters including a space)

touch file1 file10 file11 file2 File2 File3
touch file33 fileAB filea fileA fileAAA
touch "file("
touch "file 2"

3. List (with ls) all files starting with file

ls file*

4. List (with ls) all files starting with File

ls File*

5. List (with ls) all files starting with file and ending in a number.

ls file*[0-9]

6. List (with ls) all files starting with file and ending with a letter

ls file*[a-z]

7. List (with ls) all files starting with File and having a digit as fifth character.

ls File[0-9]*

8. List (with ls) all files starting with File and having a digit as fifth character and nothing
else.

ls File[0-9]

9. List (with ls) all files starting with a letter and ending in a number.

ls [a-z]*[0-9]

10. List (with ls) all files that have exactly five characters.

ls ?????

177

17. file globbing

11. List (with ls) all files that start with f or F and end with 3 or A.

ls [fF]*[3A]

12. List (with ls) all files that start with f have i or R as second character and end in a number.

ls f[iR]*[0-9]

13. List all files that do not start with the letter F.

ls [!F]*

14. Copy the value of $LANG to $MyLANG.

MyLANG=$LANG

15. Show the influence of $LANG in listing A-Z or a-z ranges.

see example in book

16. You receive information that one of your servers was cracked, the cracker probably re-
placed the ls command. You know that the echo command is safe to use. Can echo replace
ls ? How can you list the files in the current directory with echo ?

echo *

17. Is there another command besides cd to change directories ?

pushd popd

178

18. regular expressions

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

Regular expressions are a very powerful tool in Linux. They can be used with a variety of
programs like bash, vi, rename, grep, sed, and more.

This chapter introduces you to the basics of regular expressions.

18.1. regex versions

There are three different versions of regular expression syntax:

BRE: Basic Regular Expressions
ERE: Extended Regular Expressions
PRCE: Perl Regular Expressions

Depending on the tool being used, one or more of these syntaxes can be used.

For example the grep tool has the -E option to force a string to be read as EREwhile -G forces
BRE and -P forces PRCE.

Note that grep also has -F to force the string to be read literally.

The sed tool also has options to choose a regex syntax.

Read the manual of the tools you use!

18.2. grep

18.2.1. print lines matching a pattern

grep is a popular Linux tool to search for lines that match a certain pattern. Below are some
examples of the simplest regular expressions.

This is the contents of the test file. This file contains three lines (or three newline charac-
ters).

student@linux:~$ cat names
Tania
Laura
Valentina

When grepping for a single character, only the lines containing that character are re-
turned.

179

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

18. regular expressions

student@linux:~$ grep u names
Laura
student@linux:~$ grep e names
Valentina
student@linux:~$ grep i names
Tania
Valentina

The pattern matching in this example should be very straightforward; if the given character
occurs on a line, then grepwill return that line.

18.2.2. concatenating characters

Two concatenated characters will have to be concatenated in the same way to have a
match.

This example demonstrates that ia will match Tania but not Valentina and in will match
Valentina but not Tania.

student@linux:~$ grep a names
Tania
Laura
Valentina
student@linux:~$ grep ia names
Tania
student@linux:~$ grep in names
Valentina
student@linux:~$

18.2.3. one or the other

PRCE and ERE both use the pipe symbol to signify OR. In this example we grep for lines
containing the letter i or the letter a.

student@linux:~$ cat list
Tania
Laura
student@linux:~$ grep -E 'i|a' list
Tania
Laura

Note that we use the -E switch of grep to force interpretion of our string as an ERE.

We need to escape the pipe symbol in a BRE to get the same logical OR.

student@linux:~$ grep -G 'i|a' list
student@linux:~$ grep -G 'i\|a' list
Tania
Laura

180

18.2. grep

18.2.4. one or more

The * signifies zero, one or more occurences of the previous and the + signifies one or more
of the previous.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o*' list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o+' list2
lol
lool
loool
student@linux:~$

18.2.5. match the end of a string

For the following examples, we will use this file.

student@linux:~$ cat names
Tania
Laura
Valentina
Fleur
Floor

The two examples below show how to use the dollar character to match the end of a
string.

student@linux:~$ grep a$ names
Tania
Laura
Valentina
student@linux:~$ grep r$ names
Fleur
Floor

18.2.6. match the start of a string

The caret character (^)will match a string at the start (or the beginning) of a line.

Given the same file as above, here are two examples.

student@linux:~$ grep ^Val names
Valentina
student@linux:~$ grep ^F names
Fleur
Floor

Both the dollar sign and the little hat are called anchors in a regex.

181

18. regular expressions

18.2.7. separating words

Regular expressions use a \b sequence to reference a word separator. Take for example this
file:

student@linux:~$ cat text
The governer is governing.
The winter is over.
Can you get over there?

Simply grepping for overwill give too many results.

student@linux:~$ grep over text
The governer is governing.
The winter is over.
Can you get over there?

Surrounding the searchedwordwith spaces is not a good solution (because other characters
can beword separators). This screenshot below showhow to use \b to find only the searched
word:

student@linux:~$ grep '\bover\b' text
The winter is over.
Can you get over there?
student@linux:~$

Note that grep also has a -w option to grep for words.

student@linux:~$ cat text
The governer is governing.
The winter is over.
Can you get over there?
student@linux:~$ grep -w over text
The winter is over.
Can you get over there?
student@linux:~$

18.2.8. grep features

Sometimes it is easier to combine a simple regex with grep options, than it is to write amore
complex regex. These options where discussed before:

grep -i
grep -v
grep -w
grep -A5
grep -B5
grep -C5

182

18.3. rename

18.2.9. preventing shell expansion of a regex

The dollar sign is a special character, both for the regex and also for the shell (remember vari-
ables and embedded shells). Therefore it is advised to always quote the regex, this prevents
shell expansion.

student@linux:~$ grep 'r$' names
Fleur
Floor

18.3. rename

18.3.1. the rename command

On Debian Linux the /usr/bin/rename command is a link to /usr/bin/prename installed
by the perl package.

student@linux ~ $ dpkg -S $(readlink -f $(which rename))
perl: /usr/bin/prename

Red Hat derived systems do not install the same rename command, so this section does not
describe rename on Red Hat (unless you copy the perl script manually).

There is often confusion on the internet about the rename command because
solutions that work fine in Debian (and Ubuntu, xubuntu, Mint, ^^.) cannot be
used in Red Hat (and CentOS, Fedora, ^^.).

18.3.2. perl

The rename command is actually a perl script that uses perl regular expressions. The
complete manual for these can be found by typing perldoc perlrequick (after installing
perldoc).

root@linux:~# aptitude install perl-doc
The following NEW packages will be installed:

perl-doc
0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 8,170 kB of archives. After unpacking 13.2 MB will be used.
Get: 1 http:^/mirrordirector.raspbian.org/raspbian/ wheezy/main perl-do^^.
Fetched 8,170 kB in 19s (412 kB/s)
Selecting previously unselected package perl-doc.
(Reading database ^^. 67121 files and directories currently installed.)
Unpacking perl-doc (from ^^./perl-doc_5.14.2-21+rpi2_all.deb) ^^.
Adding 'diversion of /usr/bin/perldoc to /usr/bin/perldoc.stub by perl-doc'
Processing triggers for man-db ^^.
Setting up perl-doc (5.14.2-21+rpi2) ^^.

root@linux:~# perldoc perlrequick

183

18. regular expressions

18.3.3. well known syntax

The most common use of the rename is to search for filenames matching a certain string
and replacing this string with an other string.
This is often presented as s/string/other string/ as seen in this example:

student@linux ~ $ ls
abc allfiles.TXT bllfiles.TXT Scratch tennis2.TXT
abc.conf backup cllfiles.TXT temp.TXT tennis.TXT
student@linux ~ $ rename 's/TXT/text/' *
student@linux ~ $ ls
abc allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup cllfiles.text temp.text tennis.text

And here is another example that uses rename with the well know syntax to change the
extensions of the same files once more:

student@linux ~ $ ls
abc allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup cllfiles.text temp.text tennis.text
student@linux ~ $ rename 's/text/txt/' *.text
student@linux ~ $ ls
abc allfiles.txt bllfiles.txt Scratch tennis2.txt
abc.conf backup cllfiles.txt temp.txt tennis.txt
student@linux ~ $

These two examples appear to work because the strings we used only exist at the end of the
filename. Remember that file extensions have no meaning in the bash shell.

The next example shows what can go wrong with this syntax.

student@linux ~ $ touch atxt.txt
student@linux ~ $ rename 's/txt/problem/' atxt.txt
student@linux ~ $ ls
abc allfiles.txt backup cllfiles.txt temp.txt tennis.txt
abc.conf aproblem.txt bllfiles.txt Scratch tennis2.txt
student@linux ~ $

Only the first occurrence of the searched string is replaced.

18.3.4. a global replace

The syntax used in the previous example can be described as s/regex/replacement/. This is
simple and straightforward, you enter a regex between the first two slashes and a replace-
ment string between the last two.

This example expands this syntax only a little, by adding a modifier.

student@linux ~ $ rename -n 's/TXT/txt/g' aTXT.TXT
aTXT.TXT renamed as atxt.txt
student@linux ~ $

The syntax we use now can be described as s/regex/replacement/g where s signifies
switch and g stands for global.
Note that this example used the -n switch to show what is being done (instead of actually
renaming the file).

184

18.4. sed

18.3.5. case insensitive replace

Another modifier that can be useful is i. this example shows how to replace a case insensi-
tive string with another string.

student@linux:~/files$ ls
file1.text file2.TEXT file3.txt
student@linux:~/files$ rename 's/.text/.txt/i' *
student@linux:~/files$ ls
file1.txt file2.txt file3.txt
student@linux:~/files$

18.3.6. renaming extensions

Command line Linux has no knowledge of MS-DOS like extensions, butmany end users and
graphical application do use them.

Here is an example on how to use rename to only rename the file extension. It uses the dollar
sign to mark the ending of the filename.

student@linux ~ $ ls *.txt
allfiles.txt bllfiles.txt cllfiles.txt really.txt.txt temp.txt tennis.txt
student@linux ~ $ rename 's/.txt$/.TXT/' *.txt
student@linux ~ $ ls *.TXT
allfiles.TXT bllfiles.TXT cllfiles.TXT really.txt.TXT
temp.TXT tennis.TXT
student@linux ~ $

Note that the dollar sign in the regex means at the end. Without the dollar sign this
command would fail on the really.txt.txt file.

18.4. sed

18.4.1. stream editor

The stream editor or short sed uses regex for stream editing.

In this example sed is used to replace a string.

echo Sunday | sed 's/Sun/Mon/'
Monday

The slashes can be replaced by a couple of other characters, which can be handy in some
cases to improve readability.

echo Sunday | sed 's:Sun:Mon:'
Monday
echo Sunday | sed 's_Sun_Mon_'
Monday
echo Sunday | sed 's|Sun|Mon|'
Monday

185

18. regular expressions

18.4.2. interactive editor

While sed is meant to be used in a stream, it can also be used interactively on a file.

student@linux:~/files$ echo Sunday > today
student@linux:~/files$ cat today
Sunday
student@linux:~/files$ sed -i 's/Sun/Mon/' today
student@linux:~/files$ cat today
Monday

18.4.3. simple back referencing

The ampersand character can be used to reference the searched (and found) string.

In this example the ampersand is used to double the occurence of the found string.

echo Sunday | sed 's/Sun/^&/'
SunSunday
echo Sunday | sed 's/day/^&/'
Sundayday

18.4.4. back referencing

Parentheses (often called round brackets) are used to group sections of the regex so they
can leter be referenced.

Consider this simple example:

student@linux:~$ echo Sunday | sed 's_\(Sun\)_\1ny_'
Sunnyday
student@linux:~$ echo Sunday | sed 's_\(Sun\)_\1ny \1_'
Sunny Sunday

18.4.5. a dot for any character

In a regex a simple dot can signify any character.

student@linux:~$ echo 2014-04-01 | sed 's/....-^.-^./YYYY-MM-DD/'
YYYY-MM-DD
student@linux:~$ echo abcd-ef-gh | sed 's/....-^.-^./YYYY-MM-DD/'
YYYY-MM-DD

18.4.6. multiple back referencing

Whenmore than onepair of parentheses is used, each of themcanbe referenced separately
by consecutive numbers.

student@linux:~$ echo 2014-04-01 | sed 's/\(....\)-\(^.\)-\(^.\)/\1+\2+\3/'
2014+04+01
student@linux:~$ echo 2014-04-01 | sed 's/\(....\)-\(^.\)-\(^.\)/\3:\2:\1/'
01:04:2014

This feature is called grouping.

186

18.4. sed

18.4.7. white space

The \s can refer to white space such as a space or a tab.

This example looks for white spaces (\s) globally and replaces them with 1 space.

student@linux:~$ echo -e 'today\tis\twarm'
today is warm
student@linux:~$ echo -e 'today\tis\twarm' | sed 's_\s_ _g'
today is warm

18.4.8. optional occurrence

A question mark signifies that the previous is optional.

The example below searches for three consecutive letter o, but the third o is optional.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'ooo?' list2
lool
loool
student@linux:~$ cat list2 | sed 's/ooo\?/A/'
ll
lol
lAl
lAl

18.4.9. exactly n times

You can demand an exact number of times the oprevious has to occur.

This example wants exactly three o’s.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o{3}' list2
loool
student@linux:~$ cat list2 | sed 's/o\{3\}/A/'
ll
lol
lool
lAl
student@linux:~$

187

18. regular expressions

18.4.10. between n and m times

And here we demand exactly fromminimum 2 to maximum 3 times.

student@linux:~$ cat list2
ll
lol
lool
loool
student@linux:~$ grep -E 'o{2,3}' list2
lool
loool
student@linux:~$ grep 'o\{2,3\}' list2
lool
loool
student@linux:~$ cat list2 | sed 's/o\{2,3\}/A/'
ll
lol
lAl
lAl
student@linux:~$

18.5. bash history

The bash shell can also interprete some regular expressions.

This example shows how to manipulate the exclamation mask history feature of the bash
shell.

student@linux:~$ mkdir hist
student@linux:~$ cd hist/
student@linux:~/hist$ touch file1 file2 file3
student@linux:~/hist$ ls -l file1
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file1
student@linux:~/hist$!l
ls -l file1
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file1
student@linux:~/hist$!l:s/1/3
ls -l file3
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file3
student@linux:~/hist$

This also works with the history numbers in bash.

student@linux:~/hist$ history 6
2089 mkdir hist
2090 cd hist/
2091 touch file1 file2 file3
2092 ls -l file1
2093 ls -l file3
2094 history 6

student@linux:~/hist$!2092
ls -l file1
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file1
student@linux:~/hist$!2092:s/1/2
ls -l file2

188

18.5. bash history

-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file2
student@linux:~/hist$

189

Part VII.

Scripting 201; job scheduling

191

19. more scripting

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

19.1. eval

eval reads arguments as input to the shell (the resulting commands are executed). This
allows using the value of a variable as a variable.

student@linux:~/test42$ answer=42
student@linux:~/test42$ word=answer
student@linux:~/test42$ eval x=\$$word ; echo $x
42

Both in bash and Korn the arguments can be quoted.

kahlan@solexp11$ answer=42
kahlan@solexp11$ word=answer
kahlan@solexp11$ eval "y=\$$word" ; echo $y
42

Sometimes the eval is needed to have correct parsing of arguments. Consider this example
where the date command receives one parameter 1 week ago.

student@linux~$ date --date="1 week ago"
Thu Mar 8 21:36:25 CET 2012

When we set this command in a variable, then executing that variable fails unless we use
eval.

student@linux~$ lastweek='date --date="1 week ago"'
student@linux~$ $lastweek
date: extra operand `ago"'
Try `date --help' for more information.
student@linux~$ eval $lastweek
Thu Mar 8 21:36:39 CET 2012

19.2. (())

The (()) allows for evaluation of numerical expressions.

193

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

19. more scripting

student@linux:~/test42$ ((42 > 33)) ^& echo true ^| echo false
true
student@linux:~/test42$ ((42 > 1201)) ^& echo true ^| echo false
false
student@linux:~/test42$ var42=42
student@linux:~/test42$ ((42 ^= var42)) ^& echo true ^| echo false
true
student@linux:~/test42$ ((42 ^= $var42)) ^& echo true ^| echo false
true
student@linux:~/test42$ var42=33
student@linux:~/test42$ ((42 ^= var42)) ^& echo true ^| echo false
false

19.3. let

The let built-in shell function instructs the shell to perform an evaluation of arithmetic ex-
pressions. It will return 0 unless the last arithmetic expression evaluates to 0.

[student@linux ~]$ let x="3 + 4" ; echo $x
7
[student@linux ~]$ let x="10 + 100/10" ; echo $x
20
[student@linux ~]$ let x="10-2+100/10" ; echo $x
18
[student@linux ~]$ let x="10*2+100/10" ; echo $x
30

The shell can also convert between different bases.

[student@linux ~]$ let x="0xFF" ; echo $x
255
[student@linux ~]$ let x="0xC0" ; echo $x
192
[student@linux ~]$ let x="0xA8" ; echo $x
168
[student@linux ~]$ let x="8#70" ; echo $x
56
[student@linux ~]$ let x="8#77" ; echo $x
63
[student@linux ~]$ let x="16#c0" ; echo $x
192

There is a difference between assigning a variable directly, or using let to evaluate the arith-
metic expressions (even if it is just assigning a value).

kahlan@solexp11$ dec=15 ; oct=017 ; hex=0x0f
kahlan@solexp11$ echo $dec $oct $hex
15 017 0x0f
kahlan@solexp11$ let dec=15 ; let oct=017 ; let hex=0x0f
kahlan@solexp11$ echo $dec $oct $hex
15 15 15

194

19.4. case

19.4. case

You can sometimes simplify nested if statements with a case construct.

[student@linux ~]$./help
What animal did you see ? lion
You better start running fast!
[student@linux ~]$./help
What animal did you see ? dog
Don't worry, give it a cookie.
[student@linux ~]$ cat help
^!/bin/bash
#
Wild Animals Helpdesk Advice
#
echo -n "What animal did you see ? "
read animal
case $animal in

"lion" | "tiger")
echo "You better start running fast!"

^;
"cat")

echo "Let that mouse go^^."
^;
"dog")

echo "Don't worry, give it a cookie."
^;
"chicken" | "goose" | "duck")

echo "Eggs for breakfast!"
^;
"liger")

echo "Approach and say 'Ah you big fluffy kitty^^.'."
^;
"babelfish")

echo "Did it fall out your ear ?"
^;
*)

echo "You discovered an unknown animal, name it!"
^;

esac
[student@linux ~]$

19.5. shell functions

Shell functions can be used to group commands in a logical way.

kahlan@solexp11$ cat funcs.ksh
^!/bin/ksh

function greetings {
echo Hello World!
echo and hello to $USER to!
}

195

19. more scripting

echo We will now call a function
greetings
echo The end

This is sample output from this script with a function.

kahlan@solexp11$./funcs.ksh
We will now call a function
Hello World!
and hello to kahlan to!
The end

A shell function can also receive parameters.

kahlan@solexp11$ cat addfunc.ksh
^!/bin/ksh

function plus {
let result="$1 + $2"
echo $1 + $2 = $result
}

plus 3 10
plus 20 13
plus 20 22

This script produces the following output.

kahlan@solexp11$./addfunc.ksh
3 + 10 = 13
20 + 13 = 33
20 + 22 = 42

19.6. practice : more scripting

1. Write a script that asks for two numbers, and outputs the sum and product (as shown
here).

Enter a number: 5
Enter another number: 2

Sum: 5 + 2 = 7
Product: 5 x 2 = 10

2. Improve the previous script to test that the numbers are between 1 and 100, exit with an
error if necessary.

3. Improve the previous script to congratulate the user if the sum equals the product.

4. Write a scriptwith a case insensitive case statement, using the shopt nocasematch option.
The nocasematch option is reset to the value it had before the scripts started.

5. If time permits (or if you are waiting for other students to finish this practice), take a look
at Linux system scripts in /etc/init.d and /etc/rc.d and try to understand them. Where does
execution of a script start in /etc/init.d/samba ? There are also some hidden scripts in ~, we
will discuss them later.

196

19.7. solution : more scripting

19.7. solution : more scripting

1. Write a script that asks for two numbers, and outputs the sum and product (as shown
here).

Enter a number: 5
Enter another number: 2

Sum: 5 + 2 = 7
Product: 5 x 2 = 10

^!/bin/bash

echo -n "Enter a number : "
read n1

echo -n "Enter another number : "
read n2

let sum="$n1+$n2"
let pro="$n1*$n2"

echo -e "Sum\t: $n1 + $n2 = $sum"
echo -e "Product\t: $n1 * $n2 = $pro"

2. Improve the previous script to test that the numbers are between 1 and 100, exit with an
error if necessary.

echo -n "Enter a number between 1 and 100 : "
read n1

if [$n1 -lt 1 -o $n1 -gt 100]
then

echo Wrong number^^.
exit 1

fi

3. Improve the previous script to congratulate the user if the sum equals the product.

if [$sum -eq $pro]
then echo Congratulations $sum ^= $pro
fi

4. Write a scriptwith a case insensitive case statement, using the shopt nocasematch option.
The nocasematch option is reset to the value it had before the scripts started.

^!/bin/bash
#
Wild Animals Case Insensitive Helpdesk Advice
#

if shopt -q nocasematch; then
nocase=yes;

else
nocase=no;

197

19. more scripting

shopt -s nocasematch;
fi

echo -n "What animal did you see ? "
read animal

case $animal in
"lion" | "tiger")

echo "You better start running fast!"
^;
"cat")

echo "Let that mouse go^^."
^;
"dog")

echo "Don't worry, give it a cookie."
^;
"chicken" | "goose" | "duck")

echo "Eggs for breakfast!"
^;
"liger")

echo "Approach and say 'Ah you big fluffy kitty.'"
^;
"babelfish")

echo "Did it fall out your ear ?"
^;
*)

echo "You discovered an unknown animal, name it!"
^;

esac

if [nocase = yes] ; then
shopt -s nocasematch;

else
shopt -u nocasematch;

fi

5. If time permits (or if you are waiting for other students to finish this practice), take a look
at Linux system scripts in /etc/init.d and /etc/rc.d and try to understand them. Where does
execution of a script start in /etc/init.d/samba ? There are also some hidden scripts in ~, we
will discuss them later.

198

20. background jobs

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

20.1. background processes

20.1.1. jobs

Stuff that runs in background of your current shell can be displayedwith the jobs command.
By default you will not have any jobs running in background.

root@linux ~# jobs
root@linux ~#

This jobs command will be used several times in this section.

20.1.2. control-Z

Some processes can be suspended with the Ctrl-Z key combination. This sends a SIGSTOP
signal to the Linux kernel, effectively freezing the operation of the process.

When doing this in vi(m), then vi(m) goes to the background. The background vi(m) can
be seen with the jobs command.

[student@linux ~]$ vi procdemo.txt

[5]+ Stopped vim procdemo.txt
[student@linux ~]$ jobs
[5]+ Stopped vim procdemo.txt

20.1.3. & ampersand

Processes that are started in background using the & character at the end of the command
line are also visible with the jobs command.

[student@linux ~]$ find / > allfiles.txt 2> /dev/null &
[6] 5230
[student@linux ~]$ jobs
[5]+ Stopped vim procdemo.txt
[6]- Running find / >allfiles.txt 2>/dev/null &
[student@linux ~]$

199

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

20. background jobs

20.1.4. jobs -p

An interesting option is jobs -p to see the process id of background processes.

[student@linux ~]$ sleep 500 &
[1] 4902
[student@linux ~]$ sleep 400 &
[2] 4903
[student@linux ~]$ jobs -p
4902
4903
[student@linux ~]$ ps `jobs -p`

PID TTY STAT TIME COMMAND
4902 pts/0 S 0:00 sleep 500
4903 pts/0 S 0:00 sleep 400

[student@linux ~]$

20.1.5. fg

Running the fg command will bring a background job to the foreground. The number of
the background job to bring forward is the parameter of fg.

[student@linux ~]$ jobs
[1] Running sleep 1000 &
[2]- Running sleep 1000 &
[3]+ Running sleep 2000 &
[student@linux ~]$ fg 3
sleep 2000

20.1.6. bg

Jobs that are suspended in background can be started in background with bg. The bg will
send a SIGCONT signal.
Below an example of the sleep command (suspended with Ctrl-Z) being reactivated in
background with bg.

[student@linux ~]$ jobs
[student@linux ~]$ sleep 5000 &
[1] 6702
[student@linux ~]$ sleep 3000

[2]+ Stopped sleep 3000
[student@linux ~]$ jobs
[1]- Running sleep 5000 &
[2]+ Stopped sleep 3000
[student@linux ~]$ bg 2
[2]+ sleep 3000 &
[student@linux ~]$ jobs
[1]- Running sleep 5000 &
[2]+ Running sleep 3000 &
[student@linux ~]$

200

20.2. practice : background processes

20.2. practice : background processes

1. Use the jobs command to verify whether you have any processes running in back-
ground.

2. Use vi to create a little text file. Suspend vi in background.

3. Verify with jobs that vi is suspended in background.

4. Start find / > allfiles.txt 2>/dev/null in foreground. Suspend it in background
before it finishes.

5. Start two long sleep processes in background.

6. Display all jobs in background.

7. Use the kill command to suspend the last sleep process.
8. Continue the find process in background (make sure it runs again).

9. Put one of the sleep commands back in foreground.

10. (if time permits, a general review question...) Explain in detail where the numbers come
from in the next screenshot. When are the variables replaced by their value ? By which shell
?

[student@linux ~]$ echo $$ $PPID
4224 4223
[student@linux ~]$ bash -c "echo $$ $PPID"
4224 4223
[student@linux ~]$ bash -c 'echo $$ $PPID'
5059 4224
[student@linux ~]$ bash -c `echo $$ $PPID`
4223: 4224: command not found

20.3. solution : background processes

1. Use the jobs command to verify whether you have any processes running in back-
ground.

jobs (maybe the catfun is still running?)

2. Use vi to create a little text file. Suspend vi in background.

vi text.txt
(inside vi press ctrl-z)

3. Verify with jobs that vi is suspended in background.

[student@linux ~]$ jobs
[1]+ Stopped vim text.txt

4. Start find / > allfiles.txt 2>/dev/null in foreground. Suspend it in background
before it finishes.

[student@linux ~]$ find / > allfiles.txt 2>/dev/null
(press ctrl-z)

[2]+ Stopped find / > allfiles.txt 2> /dev/null

201

20. background jobs

5. Start two long sleep processes in background.

sleep 4000 & ; sleep 5000 &

6. Display all jobs in background.

[student@linux ~]$ jobs
[1]- Stopped vim text.txt
[2]+ Stopped find / > allfiles.txt 2> /dev/null
[3] Running sleep 4000 &
[4] Running sleep 5000 &

7. Use the kill command to suspend the last sleep process.

[student@linux ~]$ kill -SIGSTOP 4519
[student@linux ~]$ jobs
[1] Stopped vim text.txt
[2]- Stopped find / > allfiles.txt 2> /dev/null
[3] Running sleep 4000 &
[4]+ Stopped sleep 5000

8. Continue the find process in background (make sure it runs again).

bg 2 (verify the job-id in your jobs list)

9. Put one of the sleep commands back in foreground.

fg 3 (again verify your job-id)

10. (if time permits, a general review question...) Explain in detail where the numbers come
from in the next screenshot. When are the variables replaced by their value ? By which shell
?

[student@linux ~]$ echo $$ $PPID
4224 4223
[student@linux ~]$ bash -c "echo $$ $PPID"
4224 4223
[student@linux ~]$ bash -c 'echo $$ $PPID'
5059 4224
[student@linux ~]$ bash -c `echo $$ $PPID`
4223: 4224: command not found

The current bash shell will replace the $$ and $PPID while scanning the line, and before
executing the echo command.

[student@linux ~]$ echo $$ $PPID
4224 4223

The variables are now double quoted, but the current bash shell will replace $$ and $PPID
while scanning the line, and before executing the bash -c command.

202

20.3. solution : background processes

[student@linux ~]$ bash -c "echo $$ $PPID"
4224 4223

The variables are now single quoted. The current bash shell will not replace the $$ and the
$PPID. The bash -c commandwill be executed before the variables replacedwith their value.
This latter bash is the one replacing the $$ and $PPID with their value.

[student@linux ~]$ bash -c 'echo $$ $PPID'
5059 4224

Withbackticks the shell will still replaceboth variable before the embeddedecho is executed.
The result of this echo is the two process id’s. These are given as commands to bash -c. But
two numbers are not commands!

[student@linux ~]$ bash -c `echo $$ $PPID`
4223: 4224: command not found

203

21. scheduling

(Written by Paul Cobbaut, https://github.com/paulcobbaut/)

Linux administrators use the at to schedule one time jobs. Recurring jobs are better sched-
uled with cron. The next two sections will discuss both tools.

21.1. one time jobs with at

21.1.1. at

Simple scheduling can be done with the at command. This screenshot shows the schedul-
ing of the date command at 22:01 and the sleep command at 22:03.

root@linux:~# at 22:01
at> date
at> <EOT>
job 1 at Wed Aug 1 22:01:00 2007
root@linux:~# at 22:03
at> sleep 10
at> <EOT>
job 2 at Wed Aug 1 22:03:00 2007
root@linux:~#

In real life you will hopefully be scheduling more useful commands ;-)

21.1.2. atq

It is easy to check when jobs are scheduled with the atq or at -l commands.

root@linux:~# atq
1 Wed Aug 1 22:01:00 2007 a root
2 Wed Aug 1 22:03:00 2007 a root
root@linux:~# at -l
1 Wed Aug 1 22:01:00 2007 a root
2 Wed Aug 1 22:03:00 2007 a root
root@linux:~#

The at command understands English words like tomorrow and teatime to schedule com-
mands the next day and at four in the afternoon.

root@linux:~# at 10:05 tomorrow
at> sleep 100
at> <EOT>
job 5 at Thu Aug 2 10:05:00 2007
root@linux:~# at teatime tomorrow
at> tea

205

https://github.com/paulcobbaut/

21. scheduling

at> <EOT>
job 6 at Thu Aug 2 16:00:00 2007
root@linux:~# atq
6 Thu Aug 2 16:00:00 2007 a root
5 Thu Aug 2 10:05:00 2007 a root
root@linux:~#

21.1.3. atrm

Jobs in the at queue can be removed with atrm.

root@linux:~# atq
6 Thu Aug 2 16:00:00 2007 a root
5 Thu Aug 2 10:05:00 2007 a root
root@linux:~# atrm 5
root@linux:~# atq
6 Thu Aug 2 16:00:00 2007 a root
root@linux:~#

21.1.4. at.allow and at.deny

You can also use the /etc/at.allow and /etc/at.deny files to manage who can schedule
jobs with at.

The /etc/at.allow file can contain a list of users that are allowed to schedule at jobs. When
/etc/at.allow does not exist, then everyone can use at unless their username is listed in
/etc/at.deny.
If none of these files exist, then everyone can use at.

21.2. cron

21.2.1. crontab file

The crontab(1) command can be used tomaintain the crontab(5) file. Each user can have
their own crontab file to schedule jobs at a specific time. This time can be specifiedwith five
fields in this order: minute, hour, day of the month, month and day of the week. If a field
contains an asterisk (*), then this means all values of that field.

The following examplemeans : run script42 eightminutes after two, every day of themonth,
every month and every day of the week.

8 14 * * * script42

Run script8472 every month on the first of the month at 25 past midnight.

25 0 1 * * script8472

Run this script33 every two minutes on Sunday (both 0 and 7 refer to Sunday).

^/2 * * * 0

Instead of these five fields, you can also type one of these: @reboot, @yearly or @annually,
@monthly, @weekly, @daily or @midnight, and @hourly.

206

21.2. cron

21.2.2. crontab command

Users should not edit the crontab file directly, instead they should type crontab -e which
will use the editor defined in the EDITOR or VISUAL environment variable. Users can display
their cron table with crontab -l.

21.2.3. cron.allow and cron.deny

The cron daemon crond is reading the cron tables, taking into account the /etc/cron.allow
and /etc/cron.deny files.
These files work in the sameway as at.allow and at.deny. When the cron.allow file exists,
then your username has to be in it, otherwise you cannot use cron. When the cron.allow
file does not exists, then your username cannot be in the cron.deny file if you want to use
cron.

21.2.4. /etc/crontab

The /etc/crontab file contains entries for when to run hourly/daily/weekly/monthly tasks. It
will look similar to this output.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

20 3 * * * root run-parts --report /etc/cron.daily
40 3 * * 7 root run-parts --report /etc/cron.weekly
55 3 1 * * root run-parts --report /etc/cron.monthly

21.2.5. /etc/cron.*

The directories shown in the next screenshot contain the tasks that are run at the times
scheduled in /etc/crontab. The /etc/cron.d directory is for special cases, to schedule jobs
that require finer control than hourly/daily/weekly/monthly.

student@linux:~$ ls -ld /etc/cron.*
drwxr-xr-x 2 root root 4096 2008-04-11 09:14 /etc/cron.d
drwxr-xr-x 2 root root 4096 2008-04-19 15:04 /etc/cron.daily
drwxr-xr-x 2 root root 4096 2008-04-11 09:14 /etc/cron.hourly
drwxr-xr-x 2 root root 4096 2008-04-11 09:14 /etc/cron.monthly
drwxr-xr-x 2 root root 4096 2008-04-11 09:14 /etc/cron.weekly

21.2.6. /etc/cron.*

Note that Red Hat uses anacron to schedule daily, weekly and monthly cron jobs.

root@linux:/etc# cat anacrontab
/etc/anacrontab: configuration file for anacron

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

207

21. scheduling

the maximal random delay added to the base delay of the jobs
RANDOM_DELAY=45
the jobs will be started during the following hours only
START_HOURS_RANGE=3-22

#period in days delay in minutes job-identifier command
1 5 cron.daily nice run-parts /etc/cron.daily
7 25 cron.weekly nice run-parts /etc/cron.weekly
@monthly 45 cron.monthly nice run-parts /etc/cron.monthly
root@linux:/etc#

21.3. practice : scheduling

1. Schedule two jobs with at, display the at queue and remove a job.

2. As normal user, use crontab -e to schedule a script to run every four minutes.

3. As root, display the crontab file of your normal user.

4. As the normal user again, remove your crontab file.
5. Take a look at the cron files and directories in /etc and understand them. What is the
run-parts command doing ?

21.4. solution : scheduling

1. Schedule two jobs with at, display the at queue and remove a job.

root@linux ~# at 9pm today
at> echo go to bed >> /root/todo.txt
at> <EOT>
job 1 at 2010-11-14 21:00
root@linux ~# at 17h31 today
at> echo go to lunch >> /root/todo.txt
at> <EOT>
job 2 at 2010-11-14 17:31
root@linux ~# atq
2 2010-11-14 17:31 a root
1 2010-11-14 21:00 a root
root@linux ~# atrm 1
root@linux ~# atq
2 2010-11-14 17:31 a root
root@linux ~# date
Sun Nov 14 17:31:01 CET 2010
root@linux ~# cat /root/todo.txt
go to lunch

2. As normal user, use crontab -e to schedule a script to run every four minutes.

student@linux ~$ crontab -e
no crontab for paul - using an empty one
crontab: installing new crontab

3. As root, display the crontab file of your normal user.

208

21.4. solution : scheduling

root@linux ~# crontab -l -u paul
^/4 * * * * echo `date` >> /home/paul/crontest.txt

4. As the normal user again, remove your crontab file.

student@linux ~$ crontab -r
student@linux ~$ crontab -l
no crontab for paul

5. Take a look at the cron files and directories in /etc and understand them. What is the
run-parts command doing ?

run-parts runs a script in a directory

209

Part VIII.

SSH; Docker

211

22. ssh client and server

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

The secure shell or ssh is a collection of tools using a secure protocol for communications
with remote Linux computers.

This chapter gives an overview of the most common commands related to the use of the
sshd server and the ssh client.

22.1. about ssh

22.1.1. secure shell

Avoid using telnet, rlogin and rsh to remotely connect to your servers. These older proto-
cols do not encrypt the login session, whichmeans your user id and password can be sniffed
by tools like wireshark or tcpdump. To securely connect to your servers, use ssh.
The ssh protocol is secure in two ways. Firstly the connection is encrypted and secondly
the connection is authenticated both ways.

An ssh connection always starts with a cryptographic handshake, followed by encryption of
the transport layer using a symmetric cypher. In other words, the tunnel is encrypted before
you start typing anything.

Then authentication takes place (using user id/password or public/private keys) and com-
munication can begin over the encrypted connection.

The ssh protocol will remember the servers it connected to (and warn you in case some-
thing suspicious happened).

The openssh package is maintained by the OpenBSD people and is distributed with a lot of
operating systems (it may even be the most popular package in the world).

22.1.2. /etc/ssh/

Configuration of ssh client and server is done in the /etc/ssh directory. In the next sections
we will discuss most of the files found in /etc/ssh/.

22.1.3. ssh protocol versions

The ssh protocol has two versions (1 and 2). Avoid using version 1 anywhere, since it contains
some known vulnerabilities. You can control the protocol version via /etc/ssh/ssh_config
for the client side and /etc/ssh/sshd_config for the openssh-server daemon.

student@linux:/etc/ssh$ grep Protocol ssh_config
Protocol 2,1
student@linux:/etc/ssh$ grep Protocol sshd_config
Protocol 2

213

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

22. ssh client and server

22.1.4. public and private keys

The ssh protocol uses the well known system of public and private keys. The below
explanation is succinct, more information can be found on wikipedia.

http:^/en.wikipedia.org/wiki/Public-key_cryptography

Imagine Alice and Bob, two people that like to communicate with each other. Using public
and private keys they can communicate with encryption and with authentication.
When Alice wants to send an encrypted message to Bob, she uses the public key of Bob.
Bob shares his public key with Alice, but keeps his private key private! Since Bob is the
only one to have Bob’s private key, Alice is sure that Bob is the only one that can read the
encrypted message.

When Bob wants to verify that the message came from Alice, Bob uses the public key of
Alice to verify that Alice signed the message with her private key. Since Alice is the only
one to have Alice’s private key, Bob is sure the message came from Alice.

22.1.5. rsa and dsa algorithms

This chapter does not explain the technical implementation of cryptographic algorithms,
it only explains how to use the ssh tools with rsa and dsa. More information about these
algorithms can be found here:

http:^/en.wikipedia.org/wiki/RSA_(algorithm)
http:^/en.wikipedia.org/wiki/Digital_Signature_Algorithm

22.2. log on to a remote server

The following screenshot shows how to use ssh to log on to a remote computer running
Linux. The local user is named paul and he is logging on as user admin42 on the remote
system.

student@linux:~$ ssh admin42@192.168.1.30
The authenticity of host '192.168.1.30 (192.168.1.30)' can't be established.
RSA key fingerprint is b5:fb:3c:53:50:b4:ab:81:f3:cd:2e:bb:ba:44:d3:75.
Are you sure you want to continue connecting (yes/no)?

As you can see, the user paul is presented with an rsa authentication fingerprint from the
remote system. The user can accepts this bu typing yes. We will see later that an entry will
be added to the ~/.ssh/known_hosts file.

student@linux:~$ ssh admin42@192.168.1.30
The authenticity of host '192.168.1.30 (192.168.1.30)' can't be established.
RSA key fingerprint is b5:fb:3c:53:50:b4:ab:81:f3:cd:2e:bb:ba:44:d3:75.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.30' (RSA) to the list of known hosts.
admin42@192.168.1.30's password:
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-26-generic-pae i686)

* Documentation: https:^/help.ubuntu.com/

1 package can be updated.

214

22.3. executing a command in remote

0 updates are security updates.

Last login: Wed Jun 6 19:25:57 2012 from 172.28.0.131
admin42@ubuserver:~$

The user can get log out of the remote server by typing exit or by using Ctrl-d.

admin42@ubuserver:~$ exit
logout
Connection to 192.168.1.30 closed.
student@linux:~$

22.3. executing a command in remote

This screenshot shows how to execute the pwd command on the remote server. There is no
need to exit the server manually.

student@linux:~$ ssh admin42@192.168.1.30 pwd
admin42@192.168.1.30's password:
/home/admin42
student@linux:~$

22.4. scp

The scp commandworks just like cp, but allows the source and destination of the copy to be
behind ssh. Here is an example where we copy the /etc/hosts file from the remote server
to the home directory of user paul.

student@linux:~$ scp admin42@192.168.1.30:/etc/hosts /home/paul/serverhosts
admin42@192.168.1.30's password:
hosts 100% 809 0.8KB/s 00:00

Here is an example of the reverse, copying a local file to a remote server.

student@linux:~$ scp ~/serverhosts admin42@192.168.1.30:/etc/hosts.new
admin42@192.168.1.30's password:
serverhosts 100% 809 0.8KB/s 00:00

22.5. setting up passwordless ssh

To set up passwordless ssh authentication through public/private keys, use ssh-keygen to
generate a key pair without a passphrase, and then copy your public key to the destination
server. Let’s do this step by step.

In the example that follows, we will set up ssh without password between Alice and Bob.
Alice has an account on a RedHat Enterprise Linux server, Bob is using Ubuntu on his laptop.
Bob wants to give Alice access using ssh and the public and private key system. This means
that even if Bob changes his password on his laptop, Alice will still have access.

215

22. ssh client and server

22.5.1. ssh-keygen

The example below shows how Alice uses ssh-keygen to generate a key pair. Alice does not
enter a passphrase.

[alice@linux ~]$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/alice/.ssh/id_rsa):
Created directory '/home/alice/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/alice/.ssh/id_rsa.
Your public key has been saved in /home/alice/.ssh/id_rsa.pub.
The key fingerprint is:
9b:ac:ac:56:c2:98:e5:d9:18:c4:2a:51:72:bb:45:eb alice@linux
[alice@linux ~]$

You can use ssh-keygen -t dsa in the same way.

22.5.2. ~/.ssh

While ssh-keygen generates a public and a private key, it will also create a hidden .ssh di-
rectory with proper permissions. If you create the .ssh directorymanually, then you need to
chmod 700 it! Otherwise ssh will refuse to use the keys (world readable private keys are not
secure!).

As you can see, the .ssh directory is secure in Alice’s home directory.

[alice@linux ~]$ ls -ld .ssh
drwx------ 2 alice alice 4096 May 1 07:38 .ssh
[alice@linux ~]$

Bob is using Ubuntu at home. He decides tomanually create the .ssh directory, so he needs
to manually secure it.

bob@linux:~$ mkdir .ssh
bob@linux:~$ ls -ld .ssh
drwxr-xr-x 2 bob bob 4096 2008-05-14 16:53 .ssh
bob@linux:~$ chmod 700 .ssh/
bob@linux:~$

22.5.3. id_rsa and id_rsa.pub

Thessh-keygen commandgenerate twokeys in .ssh. Thepublic key is named~/.ssh/id_rsa.pub.
The private key is named ~/.ssh/id_rsa.

[alice@linux ~]$ ls -l .ssh/
total 16
-rw------- 1 alice alice 1671 May 1 07:38 id_rsa
-rw-r--r-- 1 alice alice 393 May 1 07:38 id_rsa.pub

The files will be named id_dsa and id_dsa.pubwhen using dsa instead of rsa.

216

22.5. setting up passwordless ssh

22.5.4. copy the public key to the other computer

To copy the public key from Alice’s server tot Bob’s laptop, Alice decides to use scp.

[alice@linux .ssh]$ scp id_rsa.pub bob@192.168.48.92:~/.ssh/authorized_keys
bob@192.168.48.92's password:
id_rsa.pub 100% 393 0.4KB/s 00:00

Be careful when copying a second key! Do not overwrite the first key, instead append the
key to the same ~/.ssh/authorized_keys file!

cat id_rsa.pub >> ~/.ssh/authorized_keys

Alice could also have used ssh-copy-id like in this example.

ssh-copy-id -i .ssh/id_rsa.pub bob@192.168.48.92

22.5.5. authorized_keys

In your ~/.ssh directory, you can create a file called authorized_keys. This file can contain
one or more public keys from people you trust. Those trusted people can use their private
keys to prove their identity and gain access to your account via ssh (without password). The
example shows Bob’s authorized_keys file containing the public key of Alice.

bob@linux:~$ cat .ssh/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEApCQ9xzyLzJes1sR+hPyqW2vyzt1D4zTLqk\
MDWBR4mMFuUZD/O583I3Lg/Q+JIq0RSksNzaL/BNLDou1jMpBe2Dmf/u22u4KmqlJBfDhe\
yTmGSBzeNYCYRSMq78CT9l9a+y6x/shucwhaILsy8A2XfJ9VCggkVtu7XlWFDL2cum08/0\
mRFwVrfc/uPsAn5XkkTscl4g21mQbnp9wJC40pGSJXXMuFOk8MgCb5ieSnpKFniAKM+tEo\
/vjDGSi3F/bxu691jscrU0VUdIoOSo98HUfEf7jKBRikxGAC7I4HLa+/zX73OIvRFAb2hv\
tUhn6RHrBtUJUjbSGiYeFTLDfcTQ^= alice@linux

22.5.6. passwordless ssh

Alice can nowuse ssh to connect passwordless to Bob’s laptop. In combinationwith ssh’s ca-
pability to execute commands on the remote host, this can be useful in pipes across different
machines.

[alice@linux ~]$ ssh bob@192.168.48.92 "ls -l .ssh"
total 4
-rw-r--r-- 1 bob bob 393 2008-05-14 17:03 authorized_keys
[alice@linux ~]$

217

22. ssh client and server

22.6. X forwarding via ssh

Another popular feature of ssh is called X11 forwarding and is implemented with ssh -X.

Below an example of X forwarding: user paul logs in as user greet on her computer to start
the graphical application mozilla-thunderbird. Although the application will run on the re-
mote computer from greet, it will be displayed on the screen attached locally to paul’s com-
puter.

student@linux:~/PDF$ ssh -X greet@greet.dyndns.org -p 55555
Warning: Permanently added the RSA host key for IP address \
'81.240.174.161' to the list of known hosts.
Password:
Linux raika 2.6.8-2-686 #1 Tue Aug 16 13:22:48 UTC 2005 i686 GNU/Linux

Last login: Thu Jan 18 12:35:56 2007
greet@raika:~$ ps fax | grep thun
greet@raika:~$ mozilla-thunderbird &
[1] 30336

22.7. troubleshooting ssh

Use ssh -v to get debug information about the ssh connection attempt.

student@linux:~$ ssh -v bert@192.168.1.192
OpenSSH_4.3p2 Debian-8ubuntu1, OpenSSL 0.9.8c 05 Sep 2006
debug1: Reading configuration data /home/paul/.ssh/config
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to 192.168.1.192 [192.168.1.192] port 22.
debug1: Connection established.
debug1: identity file /home/paul/.ssh/identity type -1
debug1: identity file /home/paul/.ssh/id_rsa type 1
debug1: identity file /home/paul/.ssh/id_dsa type -1
debug1: Remote protocol version 1.99, remote software version OpenSSH_3
debug1: match: OpenSSH_3.9p1 pat OpenSSH_3.*
debug1: Enabling compatibility mode for protocol 2.0
^^.

22.8. sshd

The ssh server is called sshd and is provided by the openssh-server package.

root@linux~# dpkg -l openssh-server | tail -1
ii openssh-server 1:5.9p1-5ubuntu1 secure shell (SSH) server,^^.

218

22.9. sshd keys

22.9. sshd keys

The public keys used by the sshd server are located in /etc/ssh and are world readable. The
private keys are only readable by root.

root@linux~# ls -l /etc/ssh/ssh_host_*
-rw------- 1 root root 668 Jun 7 2011 /etc/ssh/ssh_host_dsa_key
-rw-r--r-- 1 root root 598 Jun 7 2011 /etc/ssh/ssh_host_dsa_key.pub
-rw------- 1 root root 1679 Jun 7 2011 /etc/ssh/ssh_host_rsa_key
-rw-r--r-- 1 root root 390 Jun 7 2011 /etc/ssh/ssh_host_rsa_key.pub

22.10. ssh-agent

Whengeneratingkeyswithssh-keygen, youhave theoption toenter apassphrase toprotect
access to the keys. To avoid having to type this passphrase every time, you can add the key
to ssh-agent using ssh-add.
Most Linux distributions will start the ssh-agent automatically when you log on.

root@linux~# ps -ef | grep ssh-agent
paul 2405 2365 0 08:13 ? 00:00:00 /usr/bin/ssh-agent^^.

This clipped screenshot shows how to use ssh-add to list the keys that are currently added
to the ssh-agent

student@linux:~$ ssh-add -L
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAvgI+Vx5UrIsusZPl8da8URHGsxG7yivv3/\
^^.
wMGqa48Kelwom8TGb4Sgcwpp/VO/ldA5m+BGCw^= student@linux

22.11. practice: ssh

0. Make sure that you have access to two Linux computers, or work together with a partner
for this exercise. For this practice, we will name one of the machines the server.

1. Install sshd on the server

2. Verify in the ssh configuration files that only protocol version 2 is allowed.

3. Use ssh to log on to the server, show your current directory and then exit the server.

4. Use scp to copy a file from your computer to the server.

5. Use scp to copy a file from the server to your computer.

6. (optional, only works when you have a graphical install of Linux) Install the xeyes package
on the server and use ssh to run xeyes on the server, but display it on your client.

7. (optional, same as previous) Create a bookmark in firefox, then quit firefox on client and
server. Use ssh -X to run firefox on your display, but on your neighbour’s computer. Do you
see your neighbour’s bookmark ?

8. Use ssh-keygen to create a key pair without passphrase. Setup passwordless ssh between
you and your neighbour. (or between your client and your server)

9.Verify that the permissions on the server key files are correct; world readable for the public
keys and only root access for the private keys.

219

22. ssh client and server

10. Verify that the ssh-agent is running.
11. (optional) Protect your keypair with a passphrase, then add this key to the ssh-agent and
test your passwordless ssh to the server.

22.12. solution: ssh

0. Make sure that you have access to two Linux computers, or work together with a partner
for this exercise. For this practice, we will name one of the machines the server.

1. Install sshd on the server

apt-get install openssh-server (on Ubuntu/Debian)
yum -y install openssh-server (on Centos/Fedora/Red Hat)

2. Verify in the ssh configuration files that only protocol version 2 is allowed.

grep Protocol /etc/ssh/ssh*_config

3. Use ssh to log on to the server, show your current directory and then exit the server.

user@client$ ssh user@server-ip-address
user@server$ pwd
/home/user
user@server$ exit

4. Use scp to copy a file from your computer to the server.

scp localfile user@server:~

5. Use scp to copy a file from the server to your computer.

scp user@server:~/serverfile .

6. (optional, only works when you have a graphical install of Linux) Install the xeyes package
on the server and use ssh to run xeyes on the server, but display it on your client.

on the server:
apt-get install xeyes
on the client:
ssh -X user@server-ip
xeyes

7. (optional, same as previous) Create a bookmark in firefox, then quit firefox on client and
server. Use ssh -X to run firefox on your display, but on your neighbour’s computer. Do you
see your neighbour’s bookmark ?

8. Use ssh-keygen to create a key pair without passphrase. Setup passwordless ssh between
you and your neighbour. (or between your client and your server)

See solution in book "setting up passwordless ssh"

9. Verify that the permissions on the server key files are correct; world readable for the public
keys and only root access for the private keys.

220

22.12. solution: ssh

ls -l /etc/ssh/ssh_host_*

10. Verify that the ssh-agent is running.

ps fax | grep ssh-agent

11. (optional) Protect your keypair with a passphrase, then add this key to the ssh-agent and
test your passwordless ssh to the server.

man ssh-keygen
man ssh-agent
man ssh-add

221

A. git

(Written by Paul Cobbaut, https://github.com/paulcobbaut/, with contributions
by: Alex M. Schapelle, https://github.com/zero-pytagoras/)

This chapter is an introduction to using git on the command line. The git repository is
hosted by github, but you are free to choose another server (or create your own).

There are many excellent online tutorials for git. This list can save you one Google query:

http:^/gitimmersion.com/
http:^/git-scm.com/book

A.1. git

Linus Torvalds created git back in 2005 when Bitkeeper changed its license and the Linux
kernel developers where no longer able to use it for free.

git quickly became popular and is now the most widely used distributed version con-
trol system in the world.

Geek and Poke demonstrates why we need version control (image property of Geek and
Poke CCA 3.0).

223

https://github.com/paulcobbaut/
https://github.com/zero-pytagoras/

A. git

Besides source code for software, you can also find German and Icelandic law on github
(and probably much more by the time you are reading this).

A.2. installing git

We install gitwith aptitude install git as seen in this screenshot on Debian 6.

root@linux:~# aptitude install git
The following NEW packages will be installed:

git libcurl3-gnutls{a} liberror-perl{a}
0 packages upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
^^.
Processing triggers for man-db ^^.
Setting up libcurl3-gnutls (7.21.0-2.1+squeeze2) ^^.
Setting up liberror-perl (0.17-1) ^^.
Setting up git (1:1.7.2.5-3) ^^.

A.3. starting a project

First we create a project directory, with a simple file in it.

224

A.3. starting a project

student@linux~$ mkdir project42
student@linux~$ cd project42/
student@linux~/project42$ echo "echo The answer is 42." >> question.sh

A.3.1. git init

Then we tell git to create an empty git repository in this directory.

student@linux~/project42$ ls -la
total 12
drwxrwxr-x 2 paul paul 4096 Dec 8 16:41 .
drwxr-xr-x 46 paul paul 4096 Dec 8 16:41 ^.
-rw-rw-r-- 1 paul paul 23 Dec 8 16:41 question.sh
student@linux~/project42$ git init
Initialized empty Git repository in /home/paul/project42/.git/
student@linux~/project42$ ls -la
total 16
drwxrwxr-x 3 paul paul 4096 Dec 8 16:44 .
drwxr-xr-x 46 paul paul 4096 Dec 8 16:41 ^.
drwxrwxr-x 7 paul paul 4096 Dec 8 16:44 .git
-rw-rw-r-- 1 paul paul 23 Dec 8 16:41 question.sh

A.3.2. git config

Next we use git config to set some global options.

student@linux$ git config --global user.name Paul
student@linux$ git config --global user.email "paul.cobbaut@gmail.com"
student@linux$ git config --global core.editor vi

We can verify this config in ~/.gitconfig:

student@linux~/project42$ cat ~/.gitconfig
[user]

name = Paul
email = paul.cobbaut@gmail.com

[core]
editor = vi

A.3.3. git add

Timenow to addfile to our projectwith git add, and verify that it is addedwith git status.

student@linux~/project42$ git add question.sh
student@linux~/project42$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>^^." to unstage)
#
new file: question.sh
#

225

A. git

The git status tells us there is a new file ready to be committed.

A.3.4. git commit

With git commit you force git to record all added files (and all changes to those files) per-
manently.

student@linux~/project42$ git commit -m "starting a project"
[master (root-commit) 5c10768] starting a project
1 file changed, 1 insertion(+)
create mode 100644 question.sh

student@linux~/project42$ git status
On branch master
nothing to commit (working directory clean)

A.3.5. changing a committed file

The screenshots below show several steps. First we change a file:

student@linux~/project42$ git status
On branch master
nothing to commit (working directory clean)
student@linux~/project42$ vi question.sh

Then we verify the status and see that it is modified:

student@linux~/project42$ git status
On branch master
Changes not staged for commit:
(use "git add <file>^^." to update what will be committed)
(use "git checkout -- <file>^^." to discard changes in working directory)
#
modified: question.sh
#
no changes added to commit (use "git add" and/or "git commit -a")

Next we add it to the git repository.

student@linux~/project42$ git add question.sh
student@linux~/project42$ git commit -m "adding a she-bang to the main script"
[master 86b8347] adding a she-bang to the main script
1 file changed, 1 insertion(+)

student@linux~/project42$ git status
On branch master
nothing to commit (working directory clean)

226

A.4. git branches

A.3.6. git log

We can see all our commits again using git log.

student@linux~/project42$ git log
commit 86b8347192ea025815df7a8e628d99474b41fb6c
Author: Paul <paul.cobbaut@gmail.com>
Date: Sat Dec 8 17:12:24 2012 +0100

adding a she-bang to the main script

commit 5c10768f29aecc16161fb197765e0f14383f7bca
Author: Paul <paul.cobbaut@gmail.com>
Date: Sat Dec 8 17:09:29 2012 +0100

starting a project

The log format can be changed.

student@linux~/project42$ git log --pretty=oneline
86b8347192ea025815df7a8e628d99474b41fb6c adding a she-bang to the main script
5c10768f29aecc16161fb197765e0f14383f7bca starting a project

The log format can be customized a lot.

student@linux~/project42$ git log --pretty=format:"%an: %ar :%s"
Paul: 8 minutes ago :adding a she-bang to the main script
Paul: 11 minutes ago :starting a project

A.3.7. git mv

Renaming a file can be done with mv followed by a git remove and a git add of the new
filename. But it can be done easier and in one command using git mv.

student@linux~/project42$ git mv question.sh thequestion.sh
student@linux~/project42$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>^^." to unstage)
#
renamed: question.sh -> thequestion.sh
#
student@linux~/project42$ git commit -m "improved naming scheme"
[master 69b2c8b] improved naming scheme
1 file changed, 0 insertions(+), 0 deletions(-)
rename question.sh => thequestion.sh (100%)

A.4. git branches

Working on the project can be done in one or more git branches. Here we create a new
branch that will make changes to the script. We will merge this branch with the master
branch when we are sure the script works. (It can be useful to add git status commands
when practicing).

227

A. git

student@linux~/project42$ git branch
* master
student@linux~/project42$ git checkout -b newheader
Switched to a new branch 'newheader'
student@linux~/project42$ vi thequestion.sh
student@linux~/project42$ git add thequestion.sh
student@linux~/project42$ source thequestion.sh
The answer is 42.

It seems to work, so we commit in this branch.

student@linux~/project42$ git commit -m "adding a new company header"
[newheader 730a22b] adding a new company header
1 file changed, 4 insertions(+)

student@linux~/project42$ git branch
master

* newheader
student@linux~/project42$ cat thequestion.sh
^!/bin/bash
#
copyright linux-training.be
#

echo The answer is 42.

Let us go back to the master branch and see what happened there.

student@linux~/project42$ git checkout master
Switched to branch 'master'
student@linux~/project42$ cat thequestion.sh
^!/bin/bash
echo The answer is 42.

Nothing happened in the master branch, because we worked in another branch.

When we are sure the branch is ready for production, then we merge it into the master
branch.

student@linux~/project42$ cat thequestion.sh
^!/bin/bash
echo The answer is 42.
student@linux~/project42$ git merge newheader
Updating 69b2c8b^.730a22b
Fast-forward
thequestion.sh | 4 ++++
1 file changed, 4 insertions(+)

student@linux~/project42$ cat thequestion.sh
^!/bin/bash
#
copyright linux-training.be
#

echo The answer is 42.

The newheader branch can now be deleted.

228

A.5. to be continued...

student@linux~/project42$ git branch
* master

newheader
student@linux~/project42$ git branch -d newheader
Deleted branch newheader (was 730a22b).
student@linux~/project42$ git branch
* master

A.5. to be continued...

The git story is not finished.
There are many excellent online tutorials for git. This list can save you one Google query:

http:^/gitimmersion.com/
http:^/git-scm.com/book

A.6. github.com

Create an account on github.com. This website is a frontend for an immense git server with
over two and a half million users and almost five million projects (including Fedora, Linux
kernel, Android, Ruby on Rails, Wine, X.org, VLC...)

https:^/github.com/signup/free

This account is free of charge, we will use it in the examples below.

A.7. add your public key to github

I prefer to use github with a public key, so it probably is a good idea that you also upload
your public key to github.com.

You can upload your own key via the web interface:

https:^/github.com/settings/ssh

Please do not forget to protect your private key!

A.8. practice: git

1.Crate local project called git_practice.
2.Create a project on gitlab.com to host a local project that you have created.

3.The project should have REAMDE.md file as well as TODO.md file in it.

4.Write in REAMDE.md file description of the project and what you think it might be.

5.Initialize your project with git command, setup your username, mail and remote server.

6.Use git push -u origin master to send project saves to remote host.

229

A. git

7.Verify on gitlab.com that the project has been setup and is updated with REAMDE.md and
TODO.md.
8.Add git_hello.sh script that prints hello to username from its current location.

9.Push the script to gitlab repository.

A.9. solution: git

1.Crate local project called git_practice.

aschapelle@vaio3:~$ mkdir git_practice; cd git_practice

2.Create a project on gitlab.com to host a local project that you have created.

3.The project should have REAMDE.md file as well as TODO.md file in it.

aschapelle@vaio3:~/git_practice$ touch REAMDE.md TODO.md

4.Write in REAMDE.md file description of the project and what you think it might be.

aschapelle@vaio3:~/git_practice$ echo "This is readme file for git_practice project" > README.md;
aschapelle@vaio3:~/git_practice$echo "This is todo file for git_practice project" > TODO.md

5.Initialize your project with git command, setup your username, mail and remote server.

aschapelle@vaio3:~/git_practice$ git init
aschapelle@vaio3:~/git_practice$ git config user.name alex.schapelle

aschapelle@vaio3:~/git_practice$ git config user.mail alex@vaiolabs.com
aschapelle@vaio3:~/git_practice$ git remote add origin https:^/gitlab.com/url_to_your_project.git

6.Use git push -u origin master to send project saves to remote host.

aschapelle@vaio3:~/git_practice$ git push -u origin master

7.Verify on gitlab.com that the project has been setup and is updated with REAMDE.md and
TODO.md.
8.Add git_hello.sh script that prints hello to username from its current location.

aschapelle@vaio3:~/git_practice$ git push -u origin master

9.Push the script to gitlab repository.

aschapelle@vaio3:~/git_practice$ git push -u origin master

230

B. Introduction to vi

(Written by Paul Cobbaut, https://github.com/paulcobbaut/)

The vi editor is installed on almost every Unix. Linux will very often install vim (vi improved)
which is similar. Every system administrator should know vi(m), because it is an easy tool to
solve problems.

The vi editor is not intuitive, but once you get to know it, vi becomes a very powerful ap-
plication. Most Linux distributions will include the vimtutor which is a 45 minute lesson in
vi(m).

B.1. command mode and insert mode

The vi editor starts in command mode. In command mode, you can type commands. Some
commands will bring you into insert mode. In insert mode, you can type text. The escape
keywill return you to commandmode.

Table B.1.: getting to commandmode
key action

Esc set vi(m) in commandmode.

B.2. start typing (a A i I o O)

ThedifferencebetweenaA i I o andO is the locationwhere youcan start typing. awill append
after the current character and A will append at the end of the line. i will insert before the
current character and I will insert at the beginning of the line. o will put you in a new line
after the current line and O will put you in a new line before the current line.

Table B.2.: switch to insert mode
command action

a start typing after the current character
A start typing at the end of the current line
i start typing before the current character
I start typing at the start of the current line
o start typing on a new line after the current line
O start typing on a new line before the current line

231

https://github.com/paulcobbaut/

B. Introduction to vi

B.3. replace and delete a character (r x X)

When in commandmode (it doesn’t hurt to hit the escape keymore than once) you can use
the x key to delete the current character. The big X key (or shift x) will delete the character
left of the cursor. Also when in commandmode, you can use the r key to replace one single
character. The r key will bring you in insert mode for just one key press, and will return you
immediately to commandmode.

Table B.3.: replace and delete
command action

x delete the character below the cursor
X delete the character before the cursor
r replace the character below the cursor
p paste after the cursor (here the last deleted character)
xp switch two characters

B.4. undo, redo and repeat (u .)

When in command mode, you can undo your mistakes with u. Use ctrl-r to redo the
undo.

You can do yourmistakes twice with . (in other words, the . will repeat your last command).

Table B.4.: undo and repeat
command action

u undo the last action
ctrl-r redo the last undo
. repeat the last action

B.5. cut, copy and paste a line (dd yy p P)

When in command mode, dd will cut the current line. yy will copy the current line. You can
paste the last copied or cut line after (p) or before (P) the current line.

Table B.5.: cut, copy and paste a line
command action

dd cut the current line
yy (yank yank) copy the current line
p paste after the current line
P paste before the current line

B.6. cut, copy and paste lines (3dd 2yy)

When in commandmode, before typing dd or yy, you can type a number to repeat the com-
mand a number of times. Thus, 5dd will cut 5 lines and 4yy will copy (yank) 4 lines. That last
one will be noted by vi in the bottom left corner as ”4 line yanked”.

232

B.7. start and end of a line (0 or ^ and $)

Table B.6.: cut, copy and paste lines
command action

3dd cut three lines
4yy copy four lines

B.7. start and end of a line (0 or ^ and $)

When in commandmode, the 0 and the caret ^ will bring you to the start of the current line,
whereas the $ will put the cursor at the end of the current line. You can add 0 and $ to the
d command, d0 will delete every character between the current character and the start of
the line. Likewise d$ will delete everything from the current character till the end of the line.
Similarly y0 and y$ will yank till start and end of the current line.

Table B.7.: start and end of line
command action

0 jump to start of current line
^ jump to start of current line
$ jump to end of current line
d0 delete until start of line
d$ delete until end of line

B.8. join two lines (J) and more

When in commandmode, pressing Jwill append the next line to the current line. With yyp
you duplicate a line and with ddp you switch two lines.

Table B.8.: join two lines
command action

J join two lines
yyp duplicate a line
ddp switch two lines

B.9. words (w b)

When in commandmode, wwill jump to the next word and bwill move to the previous word.
w and b can also be combined with d and y to copy and cut words (dw db yw yb).

Table B.9.: words
command action

w forward one word
b back one word
3w forward three words
dw delete one word
yw yank (copy) one word

233

B. Introduction to vi

command action

5yb yank five words back
7dw delete seven words

B.10. save (or not) and exit (:w :q :q!)

Pressing the colon : will allow you to give instructions to vi (technically speaking, typing the
colon will open the ex editor). :w will write (save) the file, :q will quit an unchanged file
without saving, and :q! will quit vi discarding any changes. :wqwill save and quit and is the
same as typing ZZ in commandmode.

Table B.10.: save and exit vi
command action

:w save (write)
:w fname save as fname

:q quit
:wq save and quit
ZZ save and quit
:q! quit (discarding your changes)
:w! save (and write to non-writable file!)

The last one is a bit special. With :w! viwill try to chmod the file to get write permission (this
works when you are the owner) and will chmod it back when the write succeeds. This should
always work when you are root (and the file system is writable).

B.11. Searching (/ ?)

When in command mode typing / will allow you to search in vi for strings (can be a regular
expression). Typing /foo will do a forward search for the string foo and typing ?bar will do a
backward search for bar.

Table B.11.: searching
command action

/string forward search for string
?string backward search for string

n go to next occurrence of search string
/^string forward search string at beginning of line
/string$ forward search string at end of line
/br[aeio]l search for bral brel bril and brol
/\<he\> search for the word he (and not for here or the)

B.12. replace all (:1,$ s/foo/bar/g)

To replace all occurrences of the string foo with bar, first switch to ex mode with : . Then tell
vi which lines to use, for example 1,$ will do the replace all from the first to the last line. You
can write 1,5 to only process the first five lines. The s/foo/bar/g will replace all occurrences of
foo with bar.

234

B.13. reading files (:r :r !cmd)

Table B.12.: replace
command action

:4,8 s/foo/bar/g replace foo with bar on lines 4 to 8
:1,$ s/foo/bar/g replace foo with bar on all lines

B.13. reading files (:r :r !cmd)

When in commandmode, :r foowill read the file named foo, :r !foowill execute the command
foo. The result will be put at the current location. Thus :r !ls will put a listing of the current
directory in your text file.

Table B.13.: read files and input
command action

:r fname (read) file fname and paste contents
:r !cmd execute cmd and paste its output

B.14. text buffers

There are 36 buffers in vi to store text. You can use them with the " character.

Table B.14.: text buffers
command action

”add delete current line and put text in buffer a
”g7yy copy seven lines into buffer g
”ap paste from buffer a

B.15. multiple files

You can edit multiple files with vi. Here are some tips.

Table B.15.: multiple files
command action

vi file1 file2 file3 start editing three files
:args lists files and marks active file
:n start editing the next file
:e toggle with last edited file

:rew rewind file pointer to first file

B.16. abbreviations

With :ab you can put abbreviations in vi. Use :una to undo the abbreviation.

235

B. Introduction to vi

Table B.16.: abbreviations
command action

:ab str long string abbreviate str to be ’long string’
:una str un-abbreviate str

B.17. key mappings

Similarly to their abbreviations, you can use mappings with :map for command mode and
:map! for insert mode.

This example shows how to set the F6 function key to toggle between set number and set
nonumber. The <bar> separates the two commands, set number! toggles the state and set
number? reports the current state.

:map <F6> :set number!<bar>set number?<CR>

B.18. setting options

Some options that you can set in vim.

:set number (also try :se nu)
:set nonumber
:syntax on
:syntax off
:set all (list all options)
:set tabstop=8
:set tx (CR/LF style endings)
:set notx

You can set these options (and much more) in ~/.vimrc for vim or in ~/.exrc for standard
vi.

student@linux:~$ cat ~/.vimrc
set number
set tabstop=8
set textwidth=78
map <F6> :set number!<bar>set number?<CR>
student@linux:~$

B.19. practice: vi(m)

1. Start the vimtutor and do some or all of the exercises. You might need to run aptitude
install vim on xubuntu.

2. What 3 key sequence in commandmode will duplicate the current line.

3. What 3 key sequence in command mode will switch two lines’ place (line five becomes
line six and line six becomes line five).

236

B.20. solution: vi(m)

4. What 2 key sequence in command mode will switch a character’s place with the next
one.

5. vi can understand macro’s. A macro can be recorded with q followed by the name of the
macro. So qa will record the macro named a. Pressing q again will end the recording. You
can recall themacro with@ followed by the name of themacro. Try this example: i 1 ’Escape
Key’ qa yyp ’Ctrl a’ q 5@a (Ctrl a will increase the number with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use the arrow
keys to select a Visual Block, you can copy this with y or delete it with d. Try pasting it.

7. What does dwwP do when you are at the beginning of a word in a sentence ?

B.20. solution: vi(m)

1. Start the vimtutor and do some or all of the exercises. You might need to run aptitude
install vim on xubuntu.

vimtutor

2. What 3 key sequence in commandmode will duplicate the current line.

yyp

3. What 3 key sequence in command mode will switch two lines’ place (line five becomes
line six and line six becomes line five).

ddp

4. What 2 key sequence in command mode will switch a character’s place with the next
one.

xp

5. vi can understand macro’s. A macro can be recorded with q followed by the name of the
macro. So qa will record the macro named a. Pressing q again will end the recording. You
can recall themacro with@ followed by the name of themacro. Try this example: i 1 ’Escape
Key’ qa yyp ’Ctrl a’ q 5@a (Ctrl a will increase the number with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use the arrow
keys to select a Visual Block, you can copy this with y or delete it with d. Try pasting it.

cp /etc/passwd ~
vi passwd
(press Ctrl-V)

7. What does dwwP do when you are at the beginning of a word in a sentence ?

dwwP can switch the current word with the next word.

237

C. GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

C.1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, whichmeans that derivative works of the documentmust
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software man-
uals; it can be used for any textual work, regardless of subject matter or whether it is pub-
lished as a printed book. We recommend this License principally for works whose purpose
is instruction or reference.

C.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any suchmanual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall di-
rectlywithin that overall subject. (Thus, if theDocument is in part a textbook ofmathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sectionswhose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this

239

C. GNU Free Documentation License

License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Textmaybe atmost 5words, and aBack-Cover Textmaybe atmost 25words.

A “Transparent” copy of theDocumentmeans amachine-readable copy, represented in a for-
matwhose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardlywith generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for in-
put to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequentmodification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats in-
clude proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of
the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as “Acknowl-
edgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a
section when you modify the Document means that it remains a section “Entitled XYZ” ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to theDocument. TheseWarrantyDisclaimers are considered to be included
by reference in this License, but only as regardsdisclaimingwarranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

C.3. VERBATIM COPYING

Youmay copy and distribute theDocument in anymedium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to theDocument are reproduced in all copies, and that you addno other con-
ditions whatsoever to those of this License. Youmay not use technical measures to obstruct
or control the reading or further copying of the copies youmake or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

240

C.4. COPYING IN QUANTITY

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

C.4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the cov-
ers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (di-
rectly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

C.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribu-
tion andmodification of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). Youmay use the same title as a previous version
if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

241

C. GNU Free Documentation License

• F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, newauthors, andpublisher of theModifiedVersion asgivenon the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

• K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the con-
tributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

• M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

• N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If theModified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain nomaterial copied from theDocument, youmay at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in theModified Version’s license notice. These titlesmust be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangementsmade by) any one entity. If theDocument already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of theDocument do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

C.6. COMBINING DOCUMENTS

Youmay combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

242

C.7. COLLECTIONS OF DOCUMENTS

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, youmust combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

C.7. COLLECTIONS OF DOCUMENTS

Youmaymakeacollection consistingof theDocument andotherdocuments releasedunder
this License, and replace the individual copies of this License in the various documentswith a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually un-
der this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

C.8. AGGREGATIONWITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, is called an “aggre-
gate” if the copyright resulting from the compilation is not used to limit the legal rights of
the compilation’s users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of theDocument, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

C.9. TRANSLATION

Translation is consideredakindofmodification, so youmaydistribute translations of theDoc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

243

C. GNU Free Documentation License

C.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it
is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonablemeans, this is the first time
you have received notice of violation of this License (for anywork) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been termi-
nated and not permanently reinstated, receipt of a copy of some or all of the samematerial
does not give you any rights to use it.

C.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Docu-
mentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http:
//www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document spec-
ifies that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
theDocumentdoesnot specify a versionnumber of this License, youmay choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for
the Document.

C.12. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightableworks and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of busi-
ness in San Francisco, California, as well as future copyleft versions of that license published
by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of an-
other Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently

244

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

C.12. RELICENSING

incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of anMMCSitemay republish anMMCcontained in the site under CC-BY-SA on
the same site at any timebeforeAugust 1, 2009, provided theMMC is eligible for relicensing.

245

	First Linux VM
	getting Linux at home
	download a Linux CD image
	download Virtualbox
	create a virtual machine
	attach the CD image
	install Linux

	Software management; curl
	package management
	package terminology
	repository
	.deb packages
	.rpm packages
	dependency
	open source
	GUI software management

	deb package management
	about deb
	dpkg -l
	dpkg -l $package
	dpkg -S
	dpkg -L
	dpkg
	apt-get
	apt-get update
	apt-get upgrade
	apt-get clean
	apt-cache search
	apt-get install
	apt-get remove
	apt-get purge
	apt
	/etc/apt/sources.list

	the Red Hat package manager (rpm)
	dnf
	dnf list
	dnf search
	dnf info
	dnf install
	dnf upgrade
	dnf provides
	dnf remove
	dnf software groups
	rpm -qa
	rpm -q
	rpm -ql
	rpm -Uvh
	rpm -e
	Package cache
	Configuration
	Working with multiple repositories

	pip, the Python package manager
	installing pip
	listing packages
	searching for packages
	installing packages
	removing packages

	container-based package managers
	flatpak
	snap

	downloading software outside the repository
	example: compiling zork
	installing from a tarball

	practice: package management
	solution: package management

	Scripting 101
	I/O redirection
	stdin, stdout, and stderr
	output redirection
	> stdout
	output file is erased
	noclobber
	overruling noclobber
	>> append

	error redirection
	2> stderr
	2>&1

	output redirection and pipes
	joining stdout and stderr
	input redirection
	< stdin
	<< here document
	<<< here string

	confusing redirection
	quick file clear
	practice: input/output redirection
	solution: input/output redirection

	filters
	cat
	tee
	grep
	cut
	tr
	wc
	sort
	uniq
	comm
	od
	sed
	pipe examples
	who | wc
	who | cut | sort
	grep | cut

	practice: filters
	solution: filters

	shell variables
	$ dollar sign
	case sensitive
	creating variables
	quotes
	set
	unset
	$PS1
	$PATH
	env
	export
	delineate variables
	unbound variables
	practice: shell variables
	solution: shell variables

	introduction to scripting
	introduction
	hello world
	she-bang
	comments
	extension
	shell variables
	variable assignment
	unbound variables
	sourcing a script
	quoting
	troubleshooting a script
	Bash's ``strict mode''
	prevent setuid root spoofing
	practice: introduction to scripting
	solution: introduction to scripting

	Organising users
	standard file permissions
	file ownership
	user owner and group owner
	chgrp
	chown

	list of special files
	permissions
	rwx
	three sets of rwx
	permission examples
	setting permissions with symbolic notation
	setting permissions with octal notation
	umask
	mkdir -m
	cp -p

	practice: standard file permissions
	solution: standard file permissions

	advanced file permissions
	sticky bit on directory
	setgid bit on directory
	setgid and setuid on regular files
	setuid on sudo
	practice: sticky, setuid and setgid bits
	solution: sticky, setuid and setgid bits

	introduction to users
	whoami
	who
	who am i
	w
	id
	su to another user
	su to root
	su as root
	su - $username
	su -
	run a program as another user
	visudo
	sudo su -
	sudo logging
	practice: introduction to users
	solution: introduction to users

	user management
	user management
	/etc/passwd
	root
	useradd
	/etc/default/useradd
	userdel
	usermod
	creating home directories
	/etc/skel/
	deleting home directories
	login shell
	chsh
	practice: user management
	solution: user management

	user passwords
	passwd
	shadow file
	encryption with passwd
	encryption with openssl
	encryption with crypt
	/etc/login.defs
	chage
	disabling a password
	editing local files
	practice: user passwords
	solution: user passwords

	User profiles
	system profile
	~/.bash_profile
	~/.bash_login
	~/.profile
	~/.bashrc
	~/.bash_logout
	Debian overview
	RHEL5 overview
	practice: user profiles
	solution: user profiles

	groups
	groupadd
	group file
	groups
	usermod
	groupmod
	groupdel
	gpasswd
	newgrp
	vigr
	practice: groups
	solution: groups

	Webserver; scripting 102
	apache web server
	introduction to apache
	installing on Debian
	installing on RHEL/CentOS
	running apache on Debian
	running apache on CentOS
	index file on CentOS
	default website
	apache configuration

	port virtual hosts on Debian
	default virtual host
	three extra virtual hosts
	three extra ports
	three extra websites
	enabling extra websites
	testing the three websites

	named virtual hosts on Debian
	named virtual hosts
	name resolution
	enabling virtual hosts
	reload and verify

	password protected website on Debian
	port virtual hosts on CentOS
	default virtual host
	three extra virtual hosts
	three extra ports
	SELinux guards our ports
	three extra websites
	enabling extra websites
	testing the three websites
	firewall rules

	named virtual hosts on CentOS
	named virtual hosts
	name resolution
	reload and verify

	password protected website on CentOS
	troubleshooting apache
	virtual hosts example
	aliases and redirects
	more on .htaccess
	traffic
	self signed cert on Debian
	self signed cert on RHEL/CentOS
	practice: apache

	scripting loops
	test []
	if then else
	if then elif
	for loop
	while loop
	until loop
	practice: scripting tests and loops
	solution: scripting tests and loops

	scripting parameters
	script parameters
	shift through parameters
	runtime input
	sourcing a config file
	get script options with getopts
	get shell options with shopt
	practice: parameters and options
	solution: parameters and options

	Advanced text processing
	file globbing
	* asterisk
	? question mark
	[] square brackets
	a-z and 0-9 ranges
	$LANG and square brackets
	preventing file globbing
	practice: shell globbing
	solution: shell globbing

	regular expressions
	regex versions
	grep
	print lines matching a pattern
	concatenating characters
	one or the other
	one or more
	match the end of a string
	match the start of a string
	separating words
	grep features
	preventing shell expansion of a regex

	rename
	the rename command
	perl
	well known syntax
	a global replace
	case insensitive replace
	renaming extensions

	sed
	stream editor
	interactive editor
	simple back referencing
	back referencing
	a dot for any character
	multiple back referencing
	white space
	optional occurrence
	exactly n times
	between n and m times

	bash history

	Scripting 201; job scheduling
	more scripting
	eval
	(())
	let
	case
	shell functions
	practice : more scripting
	solution : more scripting

	background jobs
	background processes
	jobs
	control-Z
	& ampersand
	jobs -p
	fg
	bg

	practice : background processes
	solution : background processes

	scheduling
	one time jobs with at
	at
	atq
	atrm
	at.allow and at.deny

	cron
	crontab file
	crontab command
	cron.allow and cron.deny
	/etc/crontab
	/etc/cron.*
	/etc/cron.*

	practice : scheduling
	solution : scheduling

	SSH; Docker
	ssh client and server
	about ssh
	secure shell
	/etc/ssh/
	ssh protocol versions
	public and private keys
	rsa and dsa algorithms

	log on to a remote server
	executing a command in remote
	scp
	setting up passwordless ssh
	ssh-keygen
	~/.ssh
	id_rsa and id_rsa.pub
	copy the public key to the other computer
	authorized_keys
	passwordless ssh

	X forwarding via ssh
	troubleshooting ssh
	sshd
	sshd keys
	ssh-agent
	practice: ssh
	solution: ssh

	git
	git
	installing git
	starting a project
	git init
	git config
	git add
	git commit
	changing a committed file
	git log
	git mv

	git branches
	to be continued...
	github.com
	add your public key to github
	practice: git
	solution: git

	Introduction to vi
	command mode and insert mode
	start typing (a A i I o O)
	replace and delete a character (r x X)
	undo, redo and repeat (u .)
	cut, copy and paste a line (dd yy p P)
	cut, copy and paste lines (3dd 2yy)
	start and end of a line (0 or ^ and $)
	join two lines (J) and more
	words (w b)
	save (or not) and exit (:w :q :q!)
	Searching (/ ?)
	replace all (:1,$ s/foo/bar/g)
	reading files (:r :r !cmd)
	text buffers
	multiple files
	abbreviations
	key mappings
	setting options
	practice: vi(m)
	solution: vi(m)

	GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	RELICENSING

